Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 933: 173088, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735333

ABSTRACT

Sexual dimorphism in immune responses is an essential factor in environmental adaptation. However, the mechanisms involved remain obscure owing to the scarcity of data from sex-role-reversed species in stressed conditions. Benzo[a]pyrene (BaP) is one of the most pervasive and carcinogenic organic pollutants in coastal environments. In this study, we evaluated the potential effects on renal immunotoxicity of the sex-role-reversed lined seahorse (Hippocampus erectus) toward environmental concentrations BaP exposure. Our results discovered the presence of different energy-immunity trade-off strategies adopted by female and male seahorses during BaP exposure. BaP induced more severe renal damage in female seahorses in a concentration-dependent manner. BaP biotransformation and detoxification in seahorses resemble those in mammals. Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide (BPDE) and 9-hydroxybenzo[a]pyrene (9-OH-BaP) formed DNA adducts and disrupted Ca2+ homeostasis may together attribute the renal immunotoxicity. Sexual dimorphisms in detoxification of both BPDE and 9-OH-BaP, and in regulation of Ca2+, autophagy and inflammation, mainly determined the extent of renal damage. Moreover, the mechanism of sex hormones regulated sexual dimorphism in immune responses needs to be further elucidated. Collectively, these findings contribute to the understanding of sexual dimorphism in the immunotoxicity induced by BaP exposure in seahorses, which may attribute to the dramatic decline in the biodiversity of the genus.


Subject(s)
Benzo(a)pyrene , Sex Characteristics , Smegmamorpha , Water Pollutants, Chemical , Animals , Benzo(a)pyrene/toxicity , Male , Female , Water Pollutants, Chemical/toxicity , Smegmamorpha/physiology , Inactivation, Metabolic , Kidney/drug effects
3.
Front Immunol ; 14: 1135588, 2023.
Article in English | MEDLINE | ID: mdl-37215132

ABSTRACT

Uncovering the mechanism underlying the pathogenesis of Edwardsiella piscicida-induced enteritis is essential for global aquaculture. In the present study, we identified E. piscicida as a lethal pathogen of the big-belly seahorse (Hippocampus abdominalis) and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse. Specifically, the Flagella, Type IV pili, and Lap could significantly increase the activities of the representative functional pathways of both flagella assembly and bacterial chemotaxis in the intestinal microbiota (P < 0.01) to promote pathogen motility, adherence, and invasion. Legiobactin, IraAB, and Hpt could increase ABC transporter activity (P < 0.01) to compete for host nutrition and promote self-replication. Capsule1, HP-NAP, and FarAB could help the pathogen to avoid phagocytosis. Upon entering epithelial cells and phagocytes, Bsa T3SS and Dot/Icm could significantly increase bacterial secretion system activity (P < 0.01) to promote the intracellular survival and replication of the pathogen and the subsequent invasion of the neighboring tissues. Finally, LPS3 could significantly increase lipopolysaccharide biosynthesis (P < 0.01) to release toxins and kill the host. Throughout the pathogenic process, BopD, PhoP, and BfmRS significantly activated the two-component system (P < 0.01) to coordinate with other VFs to promote deep invasion. In addition, the levels of seven key metabolic biomarkers, Taurine, L-Proline, Uridine, L-Glutamate, Glutathione, Xanthosine, and L-Malic acid, significantly decreased (P < 0.01), and they can be used for characterizing E. piscicida infection. Overall, the present study systematically revealed how a combination of virulence factors mediate E. piscicida-induced enteritis in fish for the first time, providing a theoretical reference for preventing and controlling this disease in the aquaculture of seahorses and other fishes.


Subject(s)
Enteritis , Gastrointestinal Microbiome , Smegmamorpha , Animals , Virulence Factors/metabolism , Virulence , Smegmamorpha/metabolism , Fishes/metabolism , Metabolome
SELECTION OF CITATIONS
SEARCH DETAIL
...