Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Cancer Res ; 84(4): 517-526, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38085180

ABSTRACT

The three-dimensional (3D) tumor microenvironment (TME) comprises multiple interacting cell types that critically impact tumor pathology and therapeutic response. Efficient 3D imaging assays and analysis tools could facilitate profiling and quantifying distinctive cell-cell interaction dynamics in the TMEs of a wide spectrum of human cancers. Here, we developed a 3D live-cell imaging assay using confocal microscopy of patient-derived tumor organoids and a software tool, SiQ-3D (single-cell image quantifier for 3D), that optimizes deep learning (DL)-based 3D image segmentation, single-cell phenotype classification, and tracking to automatically acquire multidimensional dynamic data for different interacting cell types in the TME. An organoid model of tumor cells interacting with natural killer cells was used to demonstrate the effectiveness of the 3D imaging assay to reveal immuno-oncology dynamics as well as the accuracy and efficiency of SiQ-3D to extract quantitative data from large 3D image datasets. SiQ-3D is Python-based, publicly available, and customizable to analyze data from both in vitro and in vivo 3D imaging. The DL-based 3D imaging analysis pipeline can be employed to study not only tumor interaction dynamics with diverse cell types in the TME but also various cell-cell interactions involved in other tissue/organ physiology and pathology. SIGNIFICANCE: A 3D single-cell imaging pipeline that quantifies cancer cell interaction dynamics with other TME cell types using primary patient-derived samples can elucidate how cell-cell interactions impact tumor behavior and treatment responses.


Subject(s)
Deep Learning , Humans , Tumor Microenvironment , Imaging, Three-Dimensional/methods , Software , Cell Communication
2.
Cell Stem Cell ; 30(7): 917-937, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37315564

ABSTRACT

Organoids derived from adult stem cells (ASCs) and pluripotent stem cells (PSCs) are important preclinical models for studying cancer and developing therapies. Here, we review primary tissue-derived and PSC-derived cancer organoid models and detail how they have the potential to inform personalized medical approaches in different organ contexts and contribute to the understanding of early carcinogenic steps, cancer genomes, and biology. We also compare the differences between ASC- and PSC-based cancer organoid systems, discuss their limitations, and highlight recent improvements to organoid culture approaches that have helped to make them an even better representation of human tumors.


Subject(s)
Neoplasms , Pluripotent Stem Cells , Humans , Neoplasms/pathology , Organoids
3.
Nat Commun ; 14(1): 2861, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208334

ABSTRACT

Targetable drivers governing 5-fluorouracil and cisplatin (5FU + CDDP) resistance remain elusive due to the paucity of physiologically and therapeutically relevant models. Here, we establish 5FU + CDDP resistant intestinal subtype GC patient-derived organoid lines. JAK/STAT signaling and its downstream, adenosine deaminases acting on RNA 1 (ADAR1), are shown to be concomitantly upregulated in the resistant lines. ADAR1 confers chemoresistance and self-renewal in an RNA editing-dependent manner. WES coupled with RNA-seq identify enrichment of hyper-edited lipid metabolism genes in the resistant lines. Mechanistically, ADAR1-mediated A-to-I editing on 3'UTR of stearoyl-CoA desaturase (SCD1) increases binding of KH domain-containing, RNA-binding, signal transduction-associated 1 (KHDRBS1), thereby augmenting SCD1 mRNA stability. Consequently, SCD1 facilitates lipid droplet formation to alleviate chemotherapy-induced ER stress and enhances self-renewal through increasing ß-catenin expression. Pharmacological inhibition of SCD1 abrogates chemoresistance and tumor-initiating cell frequency. Clinically, high proteomic level of ADAR1 and SCD1, or high SCD1 editing/ADAR1 mRNA signature score predicts a worse prognosis. Together, we unveil a potential target to circumvent chemoresistance.


Subject(s)
Adenosine Deaminase , Drug Resistance, Neoplasm , Stearoyl-CoA Desaturase , Stomach Neoplasms , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cisplatin/metabolism , DNA-Binding Proteins/metabolism , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Proteomics , RNA/metabolism , RNA Editing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics
4.
Gut ; 72(2): 242-255, 2023 02.
Article in English | MEDLINE | ID: mdl-35705367

ABSTRACT

OBJECTIVE: Cell-cell (CC) and cell-matrix (CM) adhesions are essential for epithelial cell survival, yet dissociation-induced apoptosis is frequently circumvented in malignant cells. DESIGN: We explored CC and CM dependence in 58 gastric cancer (GC) organoids by withdrawing either ROCK inhibitor, matrix or both to evaluate their tumorigenic potential in terms of apoptosis resistance, correlation with oncogenic driver mutations and clinical behaviour. We performed mechanistic studies to determine the role of diffuse-type GC drivers: ARHGAP fusions, RHOA and CDH1, in modulating CC (CCi) or CM (CMi) adhesion independence. RESULTS: 97% of the tumour organoids were CMi, 66% were CCi and 52% were resistant to double withdrawal (CCi/CMi), while normal organoids were neither CMi nor CCi. Clinically, the CCi/CMi phenotype was associated with an infiltrative tumour edge and advanced tumour stage. Moreover, the CCi/CMi transcriptome signature was associated with poor patient survival when applied to three public GC datasets. CCi/CMi and CCi phenotypes were enriched in diffuse-type GC organoids, especially in those with oncogenic driver perturbation of RHO signalling via RHOA mutation or ARHGAP fusions. Inducible knockout of ARHGAP fusions in CCi/CMi tumour organoids led to resensitisation to CC/CM dissociation-induced apoptosis, upregulation of focal adhesion and tight junction genes, partial reversion to a more normal cystic phenotype and inhibited xenograft formation. Normal gastric organoids engineered with CDH1 or RHOA mutations became CMi or CCi, respectively. CONCLUSIONS: The CCi/CMi phenotype has a critical role in malignant transformation and tumour progression, offering new mechanistic information on RHO-ROCK pathway inhibition that contributes to GC pathogenicity.


Subject(s)
Cell Adhesion , Cell-Matrix Junctions , Stomach Neoplasms , Humans , Cell-Matrix Junctions/metabolism , Cell-Matrix Junctions/pathology , Disease Progression , Organoids/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
5.
Genome Med ; 14(1): 124, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36316687

ABSTRACT

BACKGROUND: Ganciclovir (GCV) is widely used in solid organ and haematopoietic stem cell transplant patients for prophylaxis and treatment of cytomegalovirus. It has long been considered a mutagen and carcinogen. However, the contribution of GCV to cancer incidence and other factors that influence its mutagenicity remains unknown. METHODS: This retrospective cohort study analysed genomics data for 121,771 patients who had undergone targeted sequencing compiled by the Genomics Evidence Neoplasia Information Exchange (GENIE) or Foundation Medicine (FM). A statistical approach was developed to identify patients with GCV-associated mutational signature (GCVsig) from targeted sequenced data of tumour samples. Cell line exposure models were further used to quantify mutation burden and DNA damage caused by GCV and other antiviral and immunosuppressive drugs. RESULTS: Mutational profiles from 22 of 121,771 patient samples in the GENIE and FM cohorts showed evidence of GCVsig. A diverse range of cancers was represented. All patients with detailed clinical history available had previously undergone solid organ transplantation and received GCV and mycophenolate treatment. RAS hotspot mutations associated with GCVsig were present in 9 of the 22 samples, with all samples harbouring multiple GCV-associated protein-altering mutations in cancer driver genes. In vitro testing in cell lines showed that elevated DNA damage response and GCVsig are uniquely associated with GCV but not acyclovir, a structurally similar antiviral. Combination treatment of GCV with the immunosuppressant, mycophenolate mofetil (MMF), increased the misincorporation of GCV in genomic DNA and mutations attributed to GCVsig in cell lines and organoids. CONCLUSIONS: In summary, GCV can cause a diverse range of cancers. Its mutagenicity may be potentiated by other therapies, such as mycophenolate, commonly co-prescribed with GCV for post-transplant patients. Further investigation of the optimal use of these drugs could help reduce GCV-associated mutagenesis in post-transplant patients.


Subject(s)
Cytomegalovirus Infections , Ganciclovir , Neoplasms , Humans , Antiviral Agents/adverse effects , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/prevention & control , Ganciclovir/adverse effects , Immunosuppressive Agents/adverse effects , Mutation , Neoplasms/chemically induced , Neoplasms/genetics , Retrospective Studies
6.
Nat Commun ; 13(1): 2710, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581206

ABSTRACT

Lynch Syndrome (LS) is an autosomal dominant disease conferring a high risk of colorectal cancer due to germline heterozygous mutations in a DNA mismatch repair (MMR) gene. Although cancers in LS patients show elevated somatic mutation burdens, information on mutation rates in normal tissues and understanding of the trajectory from normal to cancer cell is limited. Here we whole genome sequence 152 crypts from normal and neoplastic epithelial tissues from 10 LS patients. In normal tissues the repertoire of mutational processes and mutation rates is similar to that found in wild type individuals. A morphologically normal colonic crypt with an increased mutation burden and MMR deficiency-associated mutational signatures is identified, which may represent a very early stage of LS pathogenesis. Phylogenetic trees of tumour crypts indicate that the most recent ancestor cell of each tumour is already MMR deficient and has experienced multiple cycles of clonal evolution. This study demonstrates the genomic stability of epithelial cells with heterozygous germline MMR gene mutations and highlights important differences in the pathogenesis of LS from other colorectal cancer predisposition syndromes.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , Epithelial Cells/pathology , Germ-Line Mutation , Humans , Mutation , Phylogeny
7.
Cancer Cell ; 39(7): 913-915, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34256908

ABSTRACT

Three articles in Nature show that intestinal stem cells with cancer-promoting mutations could shape the surrounding normal tissue in their favor to promote clonal fixation and field expansion, raising the possibility of developing therapeutic strategies that maintain or enhance the health of normal cells to out-compete the mutant cells.


Subject(s)
Intestinal Neoplasms , Stem Cells , Humans , Mutation
8.
Gut ; 69(12): 2165-2179, 2020 12.
Article in English | MEDLINE | ID: mdl-32217638

ABSTRACT

OBJECTIVE: Sporadic early-onset colorectal cancer (EOCRC) has bad prognosis, yet is poorly represented by cell line models. We examine the key mutational and transcriptomic alterations in an organoid biobank enriched in EOCRCs. DESIGN: We established paired cancer (n=32) and normal organoids (n=18) from 20 patients enriched in microsatellite-stable EOCRC. Exome and transcriptome analysis was performed. RESULTS: We observed a striking diversity of molecular phenotypes, including PTPRK-RSPO3 fusions. Transcriptionally, RSPO fusion organoids resembled normal colon organoids and were distinct from APC mutant organoids, with high BMP2 and low PTK7 expression. Single cell transcriptome analysis confirmed the similarity between RSPO fusion organoids and normal organoids, with a propensity for maturation on Wnt withdrawal, whereas the APC mutant organoids were locked in progenitor stages. CRISPR/Cas9 engineered mutation of APC in normal human colon organoids led to upregulation of PTK7 protein and suppression of BMP2, but less so with an engineered RNF43 mutation. The frequent co-occurrence of RSPO fusions with SMAD4 or BMPR1A mutation was confirmed in TCGA database searches. RNF43 mutation was found in organoid from a leukaemia survivor with a novel mutational signature; and organoids with POLE proofreading mutation displayed ultramutation. The cancer organoid genomes were stable over long culture periods, while normal human colon organoids tended to be subject to clonal dominance over time. CONCLUSIONS: These organoid models enriched in EOCRCs with linked genomic data fill a gap in existing CRC models and reveal distinct genetic profiles and novel pathway cooperativity.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Profile , Organoids/pathology , Adenomatous Polyposis Coli Protein/genetics , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein Receptors, Type I/genetics , CRISPR-Cas Systems , Cell Adhesion Molecules/genetics , Gene Expression Profiling , Gene Fusion , Humans , Models, Genetic , Mutation , Receptor Protein-Tyrosine Kinases/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Smad4 Protein/genetics , Thrombospondins/genetics , Tissue Banks , Ubiquitin-Protein Ligases/genetics , Up-Regulation , Exome Sequencing
9.
J Mol Biol ; 431(15): 2884-2893, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31150736

ABSTRACT

Precision medicine requires in vitro models which will both faithfully recapitulate the features of an individual's disease and enable drug testing on a wide variety of samples covering the greatest range of phenotypes possible for a particular disease. Organoid technology has immense potential to fulfill this demand, but it will be necessary to develop robust protocols that enable the generation of organoids in a dependable manner from nearly every patient. Here we provide a user's guide, including detailed step-by-step protocols, to the establishment, isolation and verification of gastric cancer organoids. Selection strategies include omission of growth factors, addition of drugs, isolation of distinct phenotypes and generation of monoclonal lines. For confirmation of cancer identity, we use sequencing, drug selection, karyotyping and histology. While we specify these protocols for human gastric cancer organoids here, the methods described are applicable to organoids derived from other tissues as well.


Subject(s)
Organoids/pathology , Stomach Neoplasms/pathology , Genotype , Humans , Karyotyping/methods , Metaphase , Mutation , Organoids/metabolism , Precision Medicine , Smad4 Protein/genetics , Stomach Neoplasms/genetics , Tissue Culture Techniques/methods
10.
Cell Stem Cell ; 24(6): 839-840, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31173712

ABSTRACT

Five years ago, Li et al. (2014) and Gao et al. (2014) reported the power and unique advantages of cancer organoids. We shine a spotlight on the platform's enormous potential for studying cancer biology and as a preclinical human tumor model that can facilitate drug discovery and personalized therapy.


Subject(s)
Neoplasms, Experimental/pathology , Neoplasms/pathology , Organoids/pathology , Animals , Cell Culture Techniques , Disease Models, Animal , Drug Discovery , Humans , Precision Medicine , Xenograft Model Antitumor Assays
11.
Cell Stem Cell ; 23(6): 882-897.e11, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30344100

ABSTRACT

Gastric cancer displays marked molecular heterogeneity with aggressive behavior and treatment resistance. Therefore, good in vitro models that encompass unique subtypes are urgently needed for precision medicine development. Here, we have established a primary gastric cancer organoid (GCO) biobank that comprises normal, dysplastic, cancer, and lymph node metastases (n = 63) from 34 patients, including detailed whole-exome and transcriptome analysis. The cohort encompasses most known molecular subtypes (including EBV, MSI, intestinal/CIN, and diffuse/GS, with CLDN18-ARHGAP6 or CTNND1-ARHGAP26 fusions or RHOA mutations), capturing regional heterogeneity and subclonal architecture, while their morphology, transcriptome, and genomic profiles remain closely similar to in vivo tumors, even after long-term culture. Large-scale drug screening revealed sensitivity to unexpected drugs that were recently approved or in clinical trials, including Napabucasin, Abemaciclib, and the ATR inhibitor VE-822. Overall, this new GCO biobank, with linked genomic data, provides a useful resource for studying both cancer cell biology and precision cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Specimen Banks , Drug Screening Assays, Antitumor , Organoids/drug effects , Organoids/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Benzofurans/pharmacology , Cell Proliferation/drug effects , Female , Humans , Isoxazoles/pharmacology , Male , Naphthoquinones/pharmacology , Precision Medicine , Pyrazines/pharmacology , Stomach Neoplasms/classification , Stomach Neoplasms/genetics
12.
Gut ; 66(9): 1645-1656, 2017 09.
Article in English | MEDLINE | ID: mdl-27329244

ABSTRACT

OBJECTIVE: Serrated polyps (hyperplastic polyps, sessile or traditional serrated adenomas), which can arise in a sporadic or polyposis setting, predispose to colorectal cancer (CRC), especially those with microsatellite instability (MSI) due to MLH1 promoter methylation (MLH1me+). We investigate genetic alterations in the serrated polyposis pathway. DESIGN: We used a combination of exome sequencing and target gene Sanger sequencing to study serrated polyposis families, sporadic serrated polyps and CRCs, with validation by analysis of The Cancer Genome Atlas (TCGA) cohort, followed by organoid-based functional studies. RESULTS: In one out of four serrated polyposis families, we identified a germline RNF43 mutation that displayed autosomal dominant cosegregation with the serrated polyposis phenotype, along with second-hit inactivation through loss of heterozygosity or somatic mutations in all serrated polyps (16), adenomas (5) and cancer (1) examined, as well as coincidental BRAF mutation in 62.5% of the serrated polyps. Concurrently, somatic RNF43 mutations were identified in 34% of sporadic sessile/traditional serrated adenomas, but 0% of hyperplastic polyps (p=0.013). Lastly, in MSI CRCs, we found significantly more frequent RNF43 mutations in the MLH1me+ (85%) versus MLH1me- (33.3%) group (p<0.001). These findings were validated in the TCGA MSI CRCs (p=0.005), which further delineated a significant differential involvement of three Wnt pathway genes between these two groups (RNF43 in MLH1me+; APC and CTNNB1 in MLH1me-); and identified significant co-occurrence of BRAF and RNF43 mutations in the MSI (p<0.001), microsatellite stable (MSS) (p=0.002) and MLH1me+ MSI CRCs (p=0.042). Functionally, organoid culture of serrated adenoma or mouse colon with CRISPR-induced RNF43 mutations had reduced dependency on R-spondin1. CONCLUSIONS: These results illustrate the importance of RNF43, along with BRAF mutation in the serrated neoplasia pathway (both the sporadic and familial forms), inform genetic diagnosis protocol and raise therapeutic opportunities through Wnt inhibition in different stages of evolution of serrated polyps.


Subject(s)
Adenoma/genetics , Colonic Polyps/genetics , Colorectal Neoplasms/genetics , DNA-Binding Proteins/genetics , MutL Protein Homolog 1/metabolism , Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Adenoma/pathology , Adult , Colonic Polyps/pathology , Colorectal Neoplasms/pathology , Family , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Hong Kong , Humans , Male , Microsatellite Instability , Middle Aged , Mutation , Ubiquitin-Protein Ligases , Wnt Signaling Pathway/physiology
13.
Nat Genet ; 46(6): 573-82, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24816253

ABSTRACT

Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and epigenetic perturbations and unique mutational signatures. We identified previously known (TP53, ARID1A and CDH1) and new (MUC6, CTNNA2, GLI3, RNF43 and others) significantly mutated driver genes. Specifically, we found RHOA mutations in 14.3% of diffuse-type tumors but not in intestinal-type tumors (P < 0.001). The mutations clustered in recurrent hotspots affecting functional domains and caused defective RHOA signaling, promoting escape from anoikis in organoid cultures. The top perturbed pathways in gastric cancer included adherens junction and focal adhesion, in which RHOA and other mutated genes we identified participate as key players. These findings illustrate a multidimensional and comprehensive genomic landscape that highlights the molecular complexity of gastric cancer and provides a road map to facilitate genome-guided personalized therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Mutation , Stomach Neoplasms/genetics , Adherens Junctions , Algorithms , Animals , DNA Methylation , DNA Mutational Analysis , Epigenesis, Genetic , Female , Gene Dosage , Gene Expression Profiling , Genetic Variation , Genome, Human , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , rhoA GTP-Binding Protein/genetics
14.
Spermatogenesis ; 1(1): 2-13, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21866273

ABSTRACT

Environmental toxicants, such as cadmium and bisphenol A (BPA) are endocrine disruptors. In utero, perinatal or neonatal exposure of BPA to rats affect the male reproductive function, such as the blood-testis barrier (BTB) integrity. This effect of BPA on BTB integrity in immature rats is likely mediated via a loss of gap junction function at the BTB, failing to coordinate tight junction and anchoring junction function at the site to maintain the immunological barrier integrity. This in turn activates the extracellular signal-regulated kinases 1/2 (Erk1/2) downstream and an increase in protein endocytosis, destabilizing the BTB. The cadmium-induced disruption of testicular dysfunction is mediated initially via its effects on the occludin/ZO-1/focal adhesion kinase (FAK) complex at the BTB, causing redistribution of proteins at the Sertoli-Sertoli cell interface, leading to the BTB disruption. The damaging effects of these toxicants to testicular function are mediated by mitogen-activated protein kinases (MAPK) downstream, which in turn perturbs the actin bundling and accelerates the actin-branching activity, causing disruption of the Sertoli cell tight junction (TJ)-barrier function at the BTB and perturbing spermatid adhesion at the apical ectoplasmic specialization (apical ES, a testis-specific anchoring junction type) that leads to premature release of germ cells from the testis. However, the use of specific inhibitors against MAPK was shown to block or delay the cadmium-induced testicular injury, such as BTB disruption and germ cell loss. These findings suggest that there may be a common downstream p38 and/or Erk1/2 MAPK-based signaling pathway involving polarity proteins and actin regulators that is shared between different toxicants that induce male reproductive dysfunction. As such, the use of inhibitors and/or antagonists against specific MAPKs can possibly be used to "manage" the illnesses caused by these toxicants and/or "protect" industrial workers being exposed to high levels of these toxicants in their work environment.

15.
Spermatogenesis ; 1(3): 174-185, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22319666

ABSTRACT

Recent studies have demonstrated the presence of a functional axis that coordinates the events of spermiation and blood-testis barrier (BTB) restructuring which take place simultaneously at the opposite ends of the seminiferous epithelium at stage VIII of the epithelial cycle of spermatogenesis in the rat testis. In short, the disruption of the apical ectoplasmic specialization (apical ES) at the Sertoli cell-elongated spermatid interface, which facilitates the release of sperm at spermiation near the tubule lumen, is coordinated with restructuring at the BTB to accommodate the transit of preleptotene spermatocytes across the immunological barrier near the basement membrane. These two events are likely coordinated by a functional axis involving hemidesmosome at the Sertoli cell-basement membrane interface, and it was designated the apical ES-BTB-hemidesmosome axis. It was demonstrated that fragments of laminin chains (e.g., laminin ß3 or γ3 chains) derived from the α6ß1-integrin-laminin333 protein complex at the apical ES, which were likely generated via the action of MMP-2 (matrix metalloprotease-2, MMP2) prior to spermiation, acted as biologically active peptides to perturb the BTB permeability function by accelerating protein endocytosis (e.g., occludin) at the site, thereby destabilizing the BTB integrity to facilitate the transit of preleptotene spermatocytes. These laminin fragments also perturbed hemidesmosome function via their action on ß1-integrin, a component of hemidesmosome in the testis, which in turn, sent a signal to further destabilize the BTB function. As such, the events of spermiation and BTB restructuring are coordinated via this functional axis. Recent studies using animal models treated with toxicants, such as mono-(2-ethylhexyl) phthalate (MEHP), or adjudin, a male contraceptive under investigation, have also supported the presence of this functional axis in the mouse. In this short review, we critically evaluate the role of this local functional axis in the seminiferous epithelium in spermatogenesis. We also provide molecular modeling information on the interactions between biologically active laminin fragments and ß1-integrin, which will be important to assist in the design of more potent laminin-based peptides to disrupt this axis, thereby perturbing spermatogenesis for male contraception and to understand the underlying biology that coordinates spermiation and BTB restructuring during spermatogenesis.

16.
Mol Cell Endocrinol ; 315(1-2): 49-56, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19682538

ABSTRACT

Spermatogenesis is a complex biochemical event, involving the participation of the hypothalamus and the pituitary gland via secretion of the hypothalamus hormone GnRH, and two pituitary hormones FSH and LH. Thus, the hypothalamic-pituitary-testicular axis is a crucial regulatory axis for testicular function. Recent studies have shown that in the microenvironment of the seminiferous epithelium, wherein each Sertoli cell supports approximately 30-50 germ cells at different stages of development, locally produced autocrine and paracrine factors are also involved in spermatogenesis, in particular at the level of cell junctions. These cell junctions at the Sertoli-Sertoli and Sertoli-germ cell interface are crucial for coordinating different events of spermatogenesis by sending signals back-and-forth between Sertoli and germ cells, in order to precisely regulate spermatogonial cell renewal by mitosis, cell cycle progression, meiosis, spermiogenesis, germ cell movement across the epithelium, spermiation and germ cell apoptosis. In this minireview, we provide an update on these latest findings for an emerging new concept regarding the presence of a local "apical ectoplasmic specialization-blood-testis barrier-hemidesmosome/basement membrane" functional axis that regulates the events of spermiation and blood-testis barrier (BTB) restructuring via paracrine/autocrine factors and polarity proteins produced locally in the seminiferous epithelium. These findings provide a new window of research for investigators in the field to tackle the functional regulation of spermatogenesis.


Subject(s)
Seminiferous Epithelium/physiology , Spermatogenesis/physiology , Animals , Basement Membrane/metabolism , Blood-Testis Barrier/metabolism , Cytokines/metabolism , Germ Cells/physiology , Intercellular Junctions/metabolism , Male , Seminiferous Epithelium/cytology , Sertoli Cells/cytology , Sertoli Cells/physiology , Testosterone/metabolism
17.
Gastroenterology ; 137(1): 176-87, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19303019

ABSTRACT

BACKGROUND & AIMS: Repulsive guidance molecule member A (RGMA) is a glycosylphosphatidylinositol-anchored glycoprotein and axon guidance molecule that signals through its receptor, neogenin (NEO1), a homologue of the deleted-in-colorectal cancer (DCC) gene. RGMA also functions as a bone morphogenetic protein (BMP) coreceptor. We studied the potential roles of RGMA and NEO1 in colorectal cancer (CRC) pathogenesis. METHODS: We analyzed expression of RGMA and NEO1, as well as their epigenetic and genetic changes, in a large series of CRC samples, normal colon tissues, adenomas, and cell lines. These studies were accompanied by in vitro functional assay. RESULTS: RGMA and NEO1 expression were significantly down-regulated in most CRCs, adenomas, and cell lines. RGMA was frequently silenced by promoter methylation in CRCs (86.7%), adenomas (90.9%), and CRC cell lines (92.3%) but not in normal colon tissues; allelic imbalance of RGMA and NEO1 was observed in 40% and 49% of CRCs, respectively. In CRC samples, reduced RGMA levels were significantly associated with mismatch repair deficiency or mutations in KRAS or BRAF. Exposure to 5-aza-2'-deoxycytidine restored RGMA expression in CRC cell lines. Transfection of RGMA into CRC cells suppressed cell proliferation, migration, and invasion and also increased apoptosis in response to DNA-damaging agent. CONCLUSIONS: The frequent genetic and epigenetic inactivation of RGMA in CRCs and adenomas along with its in vitro function collectively support its role as a tumor suppressor in colon cells. These findings add to the expanding list of axon guidance molecules with disrupted function during colon carcinogenesis and create new opportunities for early detection and drug development.


Subject(s)
Adenoma/genetics , Colonic Neoplasms/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Gene Silencing , Genes, Tumor Suppressor , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Adenoma/metabolism , Adenoma/pathology , Allelic Imbalance , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , DNA Mismatch Repair/genetics , GPI-Linked Proteins , Humans , Membrane Proteins/metabolism , Mutation , Neoplasm Invasiveness , Nerve Tissue Proteins/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras) , Transfection , ras Proteins/genetics
18.
Proc Natl Acad Sci U S A ; 105(26): 8950-5, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18579774

ABSTRACT

The mechanism(s) that regulate and coordinate the events of spermiation and blood-testis barrier (BTB) restructuring in the seminiferous epithelium that occur concurrently at stage VIII of the seminiferous epithelial cycle of spermatogenesis are unknown. In this report, fragments derived from the laminin complex composed of laminin alpha3, beta3, and gamma3 chains (laminin-333) at the apical ectoplasmic specialization (apical ES) were shown to modulate BTB dynamics directly and/or indirectly via hemidesmosome. Experiments were performed using cultured Sertoli cells with functional tight junction (TJ) barrier and the ultrastructural features of the BTB but not apical ES. Recombinant protein fragments of laminin beta3 and gamma3 chains were shown to reduce the protein levels of occludin and beta1-integrin dose dependently at the Sertoli-Sertoli and Sertoli-basement membrane interface, respectively, thereby destabilizing the BTB permeability function. These results were corroborated by transient overexpression of laminin fragments in Sertoli cells. To further assess the role of beta1-integrin in hemidesmosome, knockdown of beta1-integrin in Sertoli cells by RNAi was found to associate with occludin redistribution at the Sertoli-Sertoli cell interface, wherein occludin moved away from the cell surface and became associated with endosomes, thereby destabilizing the BTB. In short, an apical ES-BTB-hemidesmosome autocrine regulatory axis was identified in testes, coordinating the events of spermiation and BTB restructuring that occur at the opposite ends of the seminiferous epithelium during spermatogenesis.


Subject(s)
Autocrine Communication , Blood-Testis Barrier/metabolism , Spermatogenesis , Animals , Cells, Cultured , Integrin beta1/metabolism , Laminin/metabolism , Male , Membrane Proteins/metabolism , Microscopy, Fluorescence , Models, Biological , Occludin , Peptide Fragments/metabolism , Protein Transport , RNA Interference , Rats , Rats, Sprague-Dawley , Seminiferous Epithelium/cytology , Seminiferous Epithelium/metabolism , Sertoli Cells/cytology , Sertoli Cells/metabolism , Tight Junctions/metabolism
19.
FASEB J ; 22(6): 1945-59, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18192323

ABSTRACT

During spermatogenesis in the mammalian testis, preleptotene/leptotene spermatocytes differentiate from type B spermatogonia and traverse the blood-testis barrier (BTB) at stage VIII of the seminiferous epithelial cycle for further development. This timely movement of germ cells involves extensive junction restructuring at the BTB. Previous studies have shown that these events are regulated by testosterone (T) and cytokines [e.g., the transforming growth factor (TGF) -betas], which promote and disrupt the BTB assembly, respectively. However, the mechanisms underlying the "opening" of the BTB above a migrating preleptotene/leptotene spermatocyte and the "resealing" of the barrier underneath this cell remain obscure. We now report findings on a novel mechanism utilized by the testes to regulate these events. Using cell surface protein biotinylation coupled with immunoblotting and immunofluorescent microscopy, we assessed the kinetics of endocytosis and recycling of BTB-associated integral membrane proteins: occludin, JAM-A, and N-cadherin. It was shown that these proteins were continuously endocytosed and recycled back to the Sertoli cell surface via the clathrin-mediated but not the caveolin-mediated pathway. When T or TGF-beta2 was added to Sertoli cell cultures with established functional BTB, both factors accelerated the kinetics of internalization of BTB proteins from the cell surface, perhaps above the migrating preleptotene spermatocyte, thereby opening the BTB. Likewise, T also enhanced the kinetics of recycling of internalized biotinylated proteins back to the cell surface, plausibly relocating these proteins beneath the migrating spermatocyte to reassemble the BTB. In contrast, TGF-beta2 targeted internalized biotinylated proteins to late endosomes for degradation, destabilizing the BTB. In summary, the transient opening of the BTB that facilitates germ cell movement is mediated via the differential effects of T and cytokines on the kinetics of endocytosis and recycling of integral membrane proteins at the BTB. The net result of these interactions, in turn, determines the steady-state protein levels at the Sertoli-Sertoli cell interface at the BTB.


Subject(s)
Blood-Testis Barrier/physiology , Cytokines/pharmacology , Proteins/metabolism , Sertoli Cells/metabolism , Testosterone/pharmacology , Cells, Cultured , Germ Cells , Humans , Kinetics , Male , Protein Transport
20.
Adv Exp Med Biol ; 636: 234-54, 2008.
Article in English | MEDLINE | ID: mdl-19856171

ABSTRACT

Spermatogenesis takes place in the seminiferous tubules in adult testes such as rats, in which developing germ cells must traverse the seminiferous epithelium while spermatogonia (2n, diploid) undergo mitotic and meiotic divisions, and differentiate into elongated spermatids (1n, haploid). It is conceivable that this event involves extensive junction restructuring particularly at the blood-testis barrier (BTB, a structure that segregates the seminiferous epithelium into the basal and the adluminal compartments) that occurs at stages VII-VIII of the seminiferous epithelial cycle. As such, cross-talk between tight (TJ) and anchoring junctions [e.g., basal ectoplasmic specialization (basal ES), adherens junction (AJ), desmosome-like junction (DJ)] at the BTB must occur to coordinate the transient opening of the BTB to facilitate preleptotene spermatocyte migration. Interestingly, while there are extensively restructuring at the BTB during the epithelial cycle, the immunological barrier function of the BTB must be maintained without disruption even transiently. Recent studies using the androgen suppression and Adjudin models have shown that anchoring junction restructuring that leads to germ cell loss from the seminiferous epithelium also promotes the production of AJ (e.g., basal ES) proteins (such as N-cadherins, catenins) at the BTB site. We postulate the testis is using a similar mechanism during spermatogenesis at stage VIII of the epithelial cycle that these induced basal ES proteins, likely form a "patch" surrounding the BTB, transiently maintain the BTB integrity while TJ is "opened", such as induced by TGF-b3 or TNFa, to facilitate preleptotene spermatocyte migration. However, in other stages of the epithelial cycle other than VII and VIII when the BTB remains "closed" (for approximately 10 days), anchoring junctions (e.g., AJ, DJ, and apical ES) restructuring continues to facilitate germ cell movement. Interestingly, the mechanism(s) that governs this communication between TJ and anchoring junction (e.g., basal ES and AJ) in the testis has remained obscure until recently. Herein, we provide a critical review based on the recently available data regarding the cross-talk between TJ and anchoring junction to allow simultaneous maintenance of the BTB and germ cell movement across the seminiferous epithelium.


Subject(s)
Adherens Junctions/physiology , Cell Communication/physiology , Intercellular Junctions/physiology , Spermatogenesis/physiology , Testis/physiology , Animals , Blood-Testis Barrier , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...