Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Lett ; 7(6): 917-20, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-21632617

ABSTRACT

Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO(2)-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication. We used an auditory choice chamber to study the influence of CO(2)-enriched conditions on directional responses of juvenile clownfish (Amphiprion percula) to daytime reef noise. Rearing and test conditions were based on Intergovernmental Panel on Climate Change predictions for the twenty-first century: current-day ambient, 600, 700 and 900 µatm pCO(2). Juveniles from ambient CO(2)-conditions significantly avoided the reef noise, as expected, but this behaviour was absent in juveniles from CO(2)-enriched conditions. This study provides, to our knowledge, the first evidence that ocean acidification affects the auditory response of fishes, with potentially detrimental impacts on early survival.


Subject(s)
Carbon Dioxide/pharmacology , Environmental Exposure , Hearing , Perciformes/physiology , Seawater/chemistry , Animals , Climate Change , Food Chain , Larva/drug effects
2.
Comp Biochem Physiol C Toxicol Pharmacol ; 137(4): 313-23, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15228949

ABSTRACT

The fathead minnow (Pimephales promelas) was employed to examine if dietary vitamin E supplementation could protect the inner ear from the deleterious effects of noise. Fish were fed one of the three experimental diets containing either: (1) low vitamin E content (14.5 mg/kg diet as alpha-tocopheryl acetate), (2) an adequate amount of vitamin E (50 mg/kg), or (3) high vitamin E content (450 mg/kg). After 4 weeks on the diet, fish were exposed to either 2 or 24 h of intense white noise (142 dB re: 1 microPa, bandwidth 0.3-4.0 kHz). Auditory thresholds were measured, using the auditory brainstem response (ABR) technique, within 0.5 days following noise exposure or within a recovery period of 1.5 days. Additionally, liver samples were analyzed for vitamin E content. Increased vitamin E supplementation was dose-dependently associated with a reduction in statistically significant threshold shifts after noise exposure and an enhancement of recovery (i.e., more complete recovery over a shorter period) for fish exposed to either 2 or 24 h of noise. The results obtained suggest that dietary vitamin E affords protection against noise exposure in a cyprinid fish.


Subject(s)
Fishes/physiology , Hearing Loss, Noise-Induced/prevention & control , Noise/adverse effects , alpha-Tocopherol/analogs & derivatives , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/pharmacology , Acoustic Stimulation , Animals , Audiometry , Auditory Threshold/drug effects , Auditory Threshold/physiology , Dietary Supplements , Disease Models, Animal , Hearing Loss, Noise-Induced/physiopathology , Male , Time Factors , Tocopherols
3.
Article in English | MEDLINE | ID: mdl-12160871

ABSTRACT

As concerns about the effects of underwater anthropogenic noises on the auditory function of organisms increases, it is imperative to assess if all organisms are equally affected by the same noise source. Consequently, auditory capabilities of an organism need to be evaluated and compared interspecifically. Teleost fishes provide excellent models to examine these issues due to their diversity of hearing capabilities. Broadly, fishes can be categorized as hearing specialists (broad hearing frequency range with low auditory thresholds) or hearing generalists (narrower frequency range with higher auditory thresholds). The goal of this study was to examine the immediate effects of white noise exposure (0.3-2.0 kHz, 142 dB re: 1 microPa) and recovery after exposure (1-6 days) on a hearing generalist fish, bluegill sunfish (Lepomis macrochirus). Noise exposure resulted in only a slight, but not statistically significant, elevation in auditory threshold compared to fish not exposed to noise. In combination with results from our previous studies examining effects of noise on a hearing specialist fish, the fathead minnow (Pimephales promelas), this study provides evidence supporting the hypothesis that fish's auditory thresholds can be differentially affected by noise exposure.


Subject(s)
Fishes/physiology , Noise , Animals , Evoked Potentials, Auditory , Hair Cells, Auditory/physiology
4.
J Acoust Soc Am ; 112(6): 3073-82, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12509030

ABSTRACT

Many underwater bioacoustical recording experiments (e.g., fish sound production during courtship or agonistic encounters) are usually conducted in a controlled laboratory environment of small-sized tanks. The effects of reverberation, resonance, and tank size on the characteristics of sound recorded inside small tanks have never been fully addressed, although these factors are known to influence the recordings. In this work, 5-cycle tone bursts of 1-kHz sound were used as a test signal to investigate the sound recorded in a 170-l rectangular glass tank at various depths and distances from a transducer. The dominant frequency, sound-pressure level, and power spectrum recorded in small tanks were significantly distorted compared to the original tone bursts. Due to resonance, the dominant frequency varied with water depth, and power spectrum level of the projected frequency decreased exponentially with increased distance between the hydrophone and the sound source; however, the resonant component was nearly uniform throughout the tank. Based on the empirical findings and theoretical calculation, a working protocol is presented that minimizes distortion in fish sound recordings in small tanks. To validate this approach, sounds produced by the croaking gourami (Trichopsis vittata) during staged agonistic encounters were recorded according to the proposed protocol in an 1800-l circular tank and in a 37-l rectangular tank to compare differences in acoustic characteristics associated with tank size and recording position. The findings underscore pitfalls associated with recording fish sounds in small tanks. Herein, an empirical solution to correct these distortions is provided.


Subject(s)
Agonistic Behavior/physiology , Fishes/physiology , Sexual Behavior, Animal/physiology , Sound Spectrography/methods , Vocalization, Animal/physiology , Acoustics , Animals , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...