Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Front Plant Sci ; 13: 920522, 2022.
Article in English | MEDLINE | ID: mdl-35845709

ABSTRACT

Preserving viable pollen is of great interest to breeders to maintain desirable germplasm for future inbreeding. Ultra-low temperature preservation of pollen is an effective and safe way for long-term storage of plant germplasm resources. In this study, we improved methods for the preservation of soybean pollen at ultra-low temperature. Soybean flowers at the initially-open stage were collected at 6-10 a.m. during the fully-bloom stage of soybean plants and were dehydrated for 10 h and then frozen and stored at -196 or -80°C. In vitro culture experiments showed that the viability of preserved pollen remained as high as about 90%. The off-season (local site Heihe) and off-site (Beijing, after long-distance express delivery from Heihe) hybridization verification was conducted, and no significant difference in true hybrid rate was founded between the preserved pollen and the fresh pollen. The ultra-low temperature preservation technology for soybean pollen could break the spatiotemporal limit of soybean hybridization and facilitate the development of engineered soybean breeding.

2.
Theor Appl Genet ; 132(8): 2253-2272, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161230

ABSTRACT

KEY MESSAGE: We constructed a high-density genetic linkage map comprising 4,593 SLAF markers using specific-locus amplified fragment sequencing and identified six quantitative trait loci for pod dehiscence resistance in soybean. Pod dehiscence is necessary for propagation in wild soybean (Glycine soja). It is a major component causing yield losses in cultivated soybean, however, and thus, cultivated soybean varieties have been artificially selected for resistance to pod dehiscence. Detecting quantitative trait loci (QTLs) related to pod dehiscence is required for molecular marker-assisted selection for breeding new varieties with pod dehiscence resistance. In this study, we constructed a high-density genetic linkage map using 260 recombinant inbred lines derived from the cultivars of Heihe 43 (pod-indehiscent) (ZDD24325) and Heihe 18 (pod-dehiscent) (ZDD23620). The map contained 4953 SLAF markers spanning 1478.86 cM on 20 linkage groups with an average distance between adjacent markers of 0.53 cM. In total, six novel QTLs related to pod dehiscence were mapped using inclusive composite interval mapping, explaining 7.22-24.44% of the phenotypic variance across 3 years, including three stable QTLs (qPD01, qPD05-1 and qPD08-1), that had been validated by developing CAPS/dCAPS markers. Based on the SNP/Indel and significant differential expression analyses of two parents, seven genes were selected as candidate genes for future study. The high-density map, three stable QTLs and their molecular markers will be helpful for map-based cloning of pod dehiscence resistance genes and marker-assisted selection of pod dehiscence resistance in soybean breeding.


Subject(s)
Chromosome Mapping , Genetic Loci , Glycine max/genetics , Quantitative Trait Loci/genetics , Seeds/genetics , Sequence Analysis, DNA , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Gene Ontology , Genetic Association Studies , Genetic Markers , Genome, Plant , Inbreeding , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
Genome Biol ; 18(1): 161, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28838319

ABSTRACT

BACKGROUND: Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. RESULTS: To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. CONCLUSIONS: This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Genomics , Glycine max/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Breeding , Fatty Acids/metabolism , Gene Regulatory Networks , Genetic Variation , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Phenotype , Phylogeny , Phylogeography , Polymorphism, Single Nucleotide , Glycine max/classification , Glycine max/metabolism
4.
Mol Breed ; 36: 113, 2016.
Article in English | MEDLINE | ID: mdl-27524935

ABSTRACT

Genomic selection is a promising molecular breeding strategy enhancing genetic gain per unit time. The objectives of our study were to (1) explore the prediction accuracy of genomic selection for plant height and yield per plant in soybean [Glycine max (L.) Merr.], (2) discuss the relationship between prediction accuracy and numbers of markers, and (3) evaluate the effect of marker preselection based on different methods on the prediction accuracy. Our study is based on a population of 235 soybean varieties which were evaluated for plant height and yield per plant at multiple locations and genotyped by 5361 single nucleotide polymorphism markers. We applied ridge regression best linear unbiased prediction coupled with fivefold cross-validations and evaluated three strategies of marker preselection. For plant height, marker density and marker preselection procedure impacted prediction accuracy only marginally. In contrast, for grain yield, prediction accuracy based on markers selected with a haplotype block analyses-based approach increased by approximately 4 % compared with random or equidistant marker sampling. Thus, applying marker preselection based on haplotype blocks is an interesting option for a cost-efficient implementation of genomic selection for grain yield in soybean breeding.

5.
Yi Chuan ; 37(6): 535-43, 2015 06.
Article in Chinese | MEDLINE | ID: mdl-26351049

ABSTRACT

Pod shattering is a natural property of wild soybean (Glycine soja) for propagation and also a major cause of yield loss in cultivated soybean (Glycine max L. Merr). Thus, studies on occurrence characteristics and molecular genetic basis of pod shattering in soybean can provide insights into both molecular mechanisms and potential application in legume crop improvement. In this review, we summarize the occurrence features and phenotypic identification methods of pod shattering based on analysis of the cellular microstructure of shattering-resistant soybean pod. We also introduced the identification and breeding of shattering-resistant germplasms, the progress of molecular genetic studies on shattering-resistant phenotype in soybean as well as perspectives on future studies of pod-shattering trait and application in crop improvement.


Subject(s)
Glycine max/genetics , Cloning, Molecular , Crops, Agricultural , Environment , Phenotype , Quantitative Trait Loci , Glycine max/anatomy & histology , Glycine max/growth & development
6.
PLoS One ; 9(4): e94139, 2014.
Article in English | MEDLINE | ID: mdl-24740097

ABSTRACT

BACKGROUND: With the migration of human beings, advances of agricultural sciences, evolution of planting patterns and global warming, soybeans have expanded to both tropical and high-latitude cold regions (HCRs). Unlike other regions, HCRs have much more significant and diverse photoperiods and temperature conditions over seasons or across latitudes, and HCR soybeans released there show rich diversity in maturity traits. However, HCR soybeans have not been as well classified into maturity groups (MGs) as other places. Therefore, it is necessary to identify MGs in HCRs and to genotype the maturity loci. METHODS: Local varieties were collected from the northern part of Northeast China and the far-eastern region of Russia. Maturity group reference (MGR) soybeans of MGs MG000, MG00, and MG0 were used as references during field experiments. Both local varieties and MGR soybeans were planted for two years (2010-2011) in Heihe (N 50°15', E 127°27', H 168.5 m), China. The days to VE (emergence), R1 (beginning bloom) and R7 (beginning maturity) were recorded and statistically analyzed. Furthermore, some varieties were further genotyped at four molecularly-identified maturity loci E1, E2, E3 and E4. RESULTS: The HCR varieties were classified into MG0 or even more early-maturing. In Heihe, some varieties matured much earlier than MG000, which is the most early-maturing known MG, and clustered into a separate group. We designated the group as MG0000, following the convention of MGs. HCR soybeans had relatively stable days to beginning bloom from emergence. The HCR varieties diversified into genotypes of E1, E2, E3 and E4. These loci had different effects on maturity. CONCLUSION: HCRs diversify early-maturing MGs of soybean. MG0000, a new MG that matures much earlier than known MGs, was developed. HCR soybean breeding should focus more on shortening post-flowering reproductive growth. E1, E2, E3, and E4 function differentially.


Subject(s)
Cold Climate , Glycine max/genetics , Cluster Analysis , Genotyping Techniques , Plant Development/genetics , Glycine max/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...