Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 788, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774357

ABSTRACT

Elastography ultrasound (EUS) imaging is a vital ultrasound imaging modality. The current use of EUS faces many challenges, such as vulnerability to subjective manipulation, echo signal attenuation, and unknown risks of elastic pressure in certain delicate tissues. The hardware requirement of EUS also hinders the trend of miniaturization of ultrasound equipment. Here we show a cost-efficient solution by designing a deep neural network to synthesize virtual EUS (V-EUS) from conventional B-mode images. A total of 4580 breast tumor cases were collected from 15 medical centers, including a main cohort with 2501 cases for model establishment, an external dataset with 1730 cases and a portable dataset with 349 cases for testing. In the task of differentiating benign and malignant breast tumors, there is no significant difference between V-EUS and real EUS on high-end ultrasound, while the diagnostic performance of pocket-sized ultrasound can be improved by about 5% after V-EUS is equipped.


Subject(s)
Breast Neoplasms , Elasticity Imaging Techniques , Humans , Female , Elasticity Imaging Techniques/methods , Breast Neoplasms/diagnostic imaging , Ultrasonography , Endosonography/methods , Diagnosis, Differential , Sensitivity and Specificity
2.
Front Oncol ; 12: 830910, 2022.
Article in English | MEDLINE | ID: mdl-35359391

ABSTRACT

Purpose: To develop a risk stratification system that can predict axillary lymph node (LN) metastasis in invasive breast cancer based on the combination of shear wave elastography (SWE) and conventional ultrasound. Materials and Methods: A total of 619 participants pathologically diagnosed with invasive breast cancer underwent breast ultrasound examinations were recruited from a multicenter of 17 hospitals in China from August 2016 to August 2017. Conventional ultrasound and SWE features were compared between positive and negative LN metastasis groups. The regression equation, the weighting, and the counting methods were used to predict axillary LN metastasis. The sensitivity, specificity, and the areas under the receiver operating characteristic curve (AUC) were calculated. Results: A significant difference was found in the Breast Imaging Reporting and Data System (BI-RADS) category, the "stiff rim" sign, minimum elastic modulus of the internal tumor and peritumor region of 3 mm between positive and negative LN groups (p < 0.05 for all). There was no significant difference in the diagnostic performance of the regression equation, the weighting, and the counting methods (p > 0.05 for all). Using the counting method, a 0-4 grade risk stratification system based on the four characteristics was established, which yielded an AUC of 0.656 (95% CI, 0.617-0.693, p < 0.001), a sensitivity of 54.60% (95% CI, 46.9%-62.1%), and a specificity of 68.99% (95% CI, 64.5%-73.3%) in predicting axillary LN metastasis. Conclusion: A 0-4 grade risk stratification system was developed based on SWE characteristics and BI-RADS categories, and this system has the potential to predict axillary LN metastases in invasive breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...