Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.207
Filter
1.
Chem Commun (Camb) ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973629

ABSTRACT

An efficient cyclization for the synthesis of 1,2,4,5-tetra-substituted benzenes via copper catalyzed dimerization of γ,δ-unsaturated ketones has been described. This one-pot procedure employs the γ,δ-unsaturated ketones as the sole substrate with multiple C-C bond formation. This protocol features broad substrate scope and provides a facile and robust method to construct polysubstituted benzene derivatives under mild conditions.

2.
Nat Aging ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987646

ABSTRACT

Emerging evidence suggests that neurological and other post-acute sequelae of COVID-19 can persist beyond or develop following SARS-CoV-2 infection. However, the long-term trajectories of cognitive change after a COVID-19 infection remain unclear. Here we investigated cognitive changes over a period of 2.5 years among 1,245 individuals aged 60 years or older who survived infection with the original SARS-CoV-2 strain in Wuhan, China, and 358 uninfected spouses. We show that the overall incidence of cognitive impairment among older COVID-19 survivors was 19.1% at 2.5 years after infection and hospitalization, evaluated using the Telephone Interview for Cognitive Status-40. Cognitive decline primarily manifested in individuals with severe COVID-19 during the initial year of infection, after which the rate of decline decelerated. Severe COVID-19, cognitive impairment at 6 months and hypertension were associated with long-term cognitive decline. These findings reveal the long-term cognitive trajectory of the disease and underscore the importance of post-infection cognitive care for COVID-19 survivors.

3.
Chem Commun (Camb) ; 60(51): 6496-6499, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38836703

ABSTRACT

Cobalt substitution for manganese sites in Na0.44MnO2 initiates a dynamic structural evolution process, yielding a composite cathode material comprising intergrown P2 and P3 phases. The novel P2/P3 composite cathode exhibits a reversible phase transition process during Na+ extraction/insertion, showcasing its attractive battery performance in sodium-ion batteries.

4.
Electrophoresis ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884206

ABSTRACT

Devices of nanopore sequencing can be highly portable and of low cost. Thus, nanopore sequencing is promising in in-field forensic applications. Previous investigations have demonstrated that nanopore sequencing is feasible for genotyping forensic short tandem repeats (STRs) by using sequencers of Oxford Nanopore Technologies. Recently, Qitan Technology launched a new portable nanopore sequencer and became the second supplier in the world. Here, for the first time, we assess the QNome (QNome-3841) for its accuracy in nanopore sequencing of STRs and compare with MinION (MinION Mk1B). We profile 54 STRs of 21 unrelated individuals and 2800M standard DNA. The overall accuracy for diploid STRs and haploid STRs were 53.5% (378 of 706) and 82.7% (134 of 162), respectively, by using QNome. The accuracies were remarkably lower than those of MinION (diploid STRs, 84.5%; haploid, 90.7%), with a similar amount of sequencing data and identical bioinformatics analysis. Although it was not reliable for diploid STRs typing by using QNome, the haploid STRs were consistently correctly typed. The majority of errors (58.8%) in QNome-based STR typing were one-repeat deviations of repeat units in the error from true allele, related with homopolymers in repeats of STRs.

5.
Alzheimers Dement ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824621

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.

6.
Sci Adv ; 10(22): eadl1123, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809977

ABSTRACT

Immunosenescence contributes to systematic aging and plays a role in the pathogenesis of Alzheimer's disease (AD). Therefore, the objective of this study was to investigate the potential of immune rejuvenation as a therapeutic strategy for AD. To achieve this, the immune systems of aged APP/PS1 mice were rejuvenated through young bone marrow transplantation (BMT). Single-cell RNA sequencing revealed that young BMT restored the expression of aging- and AD-related genes in multiple cell types within blood immune cells. The level of circulating senescence-associated secretory phenotype proteins was decreased following young BMT. Notably, young BMT resulted in a significant reduction in cerebral Aß plaque burden, neuronal degeneration, neuroinflammation, and improvement of behavioral deficits in aged APP/PS1 mice. The ameliorated cerebral amyloidosis was associated with an enhanced Aß clearance of peripheral monocytes. In conclusion, our study provides evidence that immune system rejuvenation represents a promising therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Rejuvenation , Animals , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Mice , Mice, Transgenic , Bone Marrow Transplantation , Behavior, Animal , Amyloid beta-Peptides/metabolism , Monocytes/immunology , Monocytes/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Aging/immunology , Humans
7.
Mol Cell Endocrinol ; 592: 112282, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815796

ABSTRACT

Understanding the effects of psychosocial stress on serum cholesterol may offer valuable insights into the relationship between psychological disorders and endocrine diseases. However, these effects and their underlying mechanisms have not been elucidated yet. Here we show that serum corticosterone, total cholesterol and low-density lipoprotein cholesterol (LDL-C) are elevated in a mouse model of psychosocial stress. Furthermore, alterations occur in AdipoR2-mediated AMPK and PPARα signaling pathways in liver, accompanied by a decrease in LDL-C clearance and an increase in cholesterol synthesis. These changes are further verified in wild-type and AdipoR2 overexpression HepG2 cells incubated with cortisol and AdipoR agonist, and are finally confirmed by treating wild-type and hepatic-specific AdipoR2 overexpression mice with corticosterone. We conclude that increased glucocorticoid mediates the effects of psychosocial stress to elevate serum cholesterol by inhibiting AdipoR2-mediated AMPK and PPARα signaling to decrease LDL-C clearance and increase cholesterol synthesis in liver.

8.
Med Eng Phys ; 126: 104156, 2024 04.
Article in English | MEDLINE | ID: mdl-38621852

ABSTRACT

Percutaneous insertion is one of the most common minimally invasive procedures. Compared with traditional straight rigid needles, bevel-tipped flexible needle can generate curved trajectories to avoid obstacles and sensitive organs. However, the nonlinear large deflection problem challenges the bending prediction of the needle, which dramatically influences the surgical success rate. This paper analyzed the mechanism of needle-tissue interaction, and established a mechanics-based model of the needle bending during an insertion. And then, a discretization of the bending model was adopted to accurately predict the large bending of the needle in soft tissue. Insertion experiments were conducted to validate the bending prediction model. The results showed that the large needle bending was predicted with the mean/RMSE/maximumu error of 0.42 mm / 0.26 mm / 1.08 mm, which was clinically acceptable. This proved the rationality and accuracy of the proposed model.


Subject(s)
Needles
9.
Fa Yi Xue Za Zhi ; 40(1): 20-29, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500457

ABSTRACT

OBJECTIVES: To explore the context and hotspot changes of forensic mixed stain research through bibliometric approach. METHODS: The literature of forensic mixed stain included in the core collection of Web of Science database from 2011 to 2022 were collected as the study object, and the annual publication number, countrie (region), institution, journal, keywords, etc. were bibliometrically and visually analyzed using the R-based Bibliometrix 1.1.6 package and VOSviewer 1.6.18 software. RESULTS: A total of 732 articles on forensic mixed stain were included from 2011 to 2022, with the annual number of articles published and the annual citation frequency showing a steady increase year by year. Among the 59 countries (regions) with the most published articles, the United States ranked first with 246 articles, followed by China with 153 articles. The literature came from 104 journals, and the total number of articles published in the top 10 journals was 633. FORENSIC SCI INT GENET ranked first with 307 articles. Visual analysis using VOSviewer software showed that keywords could be divided into four research clusters, namely the genetic marker development group (blue), the mixed stain typing analysis theory group (red), the sequencing analysis group (yellow), and the case sample research group (green). It can be divided into four development stages in terms of different time periods: early development (2011-2013), middle development (2014-2016), rapid development (2017-2020) and latest development (2021-2022). CONCLUSIONS: The number of publications by domestic and foreign scholars in the study of mixed stain in forensic science is showing a relatively stable trend. Machine learning, next generation sequencing and other research have been the hottest topics that have attracted the most attention in recent years, which is expected to further develop the theory of mixed stain typing and sequencing analysis in forensic mixed stain research.


Subject(s)
Bibliometrics , Coloring Agents , China , Forensic Sciences , High-Throughput Nucleotide Sequencing
10.
Fa Yi Xue Za Zhi ; 40(1): 70-76, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500464

ABSTRACT

In recent years, with the continuous progress of DNA extraction and detection technology, cell-free DNA(cfDNA)has been widely used in the life science field, and its potential application value in forensic identification is becoming more and more obvious. This paper reviews the concept, formation mechanism, and classification of cfDNA, etc., and describes the latest research progress of cfDNA in personal identification of crime scene touch DNA samples and non-invasive prenatal paternity testing (NIPPT). Meanwhile, this paper summarizes the potential application of cfDNA in injury inference, and discusses the advantages and disadvantages of common cfDNA analysis methods and techniques, and its application prospects, to provide a new idea for the wide application of cfDNA in the field of forensic science.


Subject(s)
Cell-Free Nucleic Acids , Pregnancy , Female , Humans , Cell-Free Nucleic Acids/genetics , Paternity , Forensic Sciences , Touch , DNA/genetics
11.
Protoplasma ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519772

ABSTRACT

Soil salinization leads to a reduction in arable land area, which seriously endangers food security. Developing saline-alkali land has become a key measure to address the contradiction between population growth and limited arable land. Rice is the most important global food crop, feeding half of the world's population and making it a suitable choice for planting on saline-alkali lands. The traditional salt-alkali improvement method has several drawbacks. Currently, non-thermal plasma (NTP) technology is being increasingly applied in agriculture. However, there are few reports on the cultivation of salt/alkali-tolerant rice. Under alkaline stress, argon NTP treatment significantly increased the germination rate of Longdao 5 (LD5) rice seeds. In addition, at 15 kV and 120 s, NTP treatment significantly increased the activity of antioxidant enzymes such as catalase and SOD. NTP treatment induced changes in genes related to salt-alkali stress in rice seedlings, such as chitinase and xylanase inhibitor proteins, which increased the tolerance of the seeds to salt-alkali stress. This experiment has expanded the application scope of NTP in agriculture, providing a more cost-effective, less harmful, and faster method for developing salt-alkali-tolerant rice and laying a theoretical foundation for cultivating NTP-enhanced salt-alkali-tolerant rice.

12.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38534249

ABSTRACT

Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings.


Subject(s)
Biosensing Techniques , Nanowires , Nucleic Acids , Silicon/chemistry , Transistors, Electronic , DNA , Biosensing Techniques/methods , Nanowires/chemistry
13.
Am J Cancer Res ; 14(2): 407-428, 2024.
Article in English | MEDLINE | ID: mdl-38455407

ABSTRACT

Thyroid cancer can be classified into three different types based on the degree of differentiation: well-differentiated, poorly differentiated, and anaplastic thyroid carcinoma. Well-differentiated thyroid cancer refers to cancer cells that closely resemble normal thyroid cells, while poorly differentiated and anaplastic thyroid carcinoma are characterized by cells that have lost their resemblance to normal thyroid cells. Advanced thyroid carcinoma, regardless of its degree of differentiation, is known to have a higher likelihood of disease progression and is generally associated with a poor prognosis. However, the process through which well-differentiated thyroid carcinoma transforms into anaplastic thyroid carcinoma, also known as "dedifferentiation", has been a subject of intensive research. In recent years, there have been significant breakthroughs in the treatment of refractory advanced thyroid cancer. Clinical studies have been conducted to evaluate the efficacy and safety of molecular targeted drugs and immune checkpoint inhibitors in the treatment of dedifferentiated thyroid cancer. These drugs work by targeting specific molecules or proteins in cancer cells to inhibit their growth or by enhancing the body's immune response against the cancer cells. This article aims to explore some of the possible mechanisms behind the dedifferentiation process in well-differentiated thyroid carcinoma. It also discusses the clinical effects of molecular targeted drugs and immune checkpoint inhibitors in thyroid cancer patients with different degrees of differentiation. Furthermore, it offers insights into the future trends in the treatment of advanced thyroid cancer, highlighting the potential for improved outcomes and better patient care.

14.
Org Lett ; 26(13): 2535-2539, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38526435

ABSTRACT

Using readily available manganese pentacarbonyl bromide as a regeneration catalyst, biomimetic asymmetric reduction of imines including quinoxalinones, benzoxazinones, and benzoxazine has been successfully developed in the presence of transfer catalyst chiral phosphoric acids, providing the chiral amines with high yields and enantioselectivities.

15.
Acta Neuropathol Commun ; 12(1): 38, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444036

ABSTRACT

Accurate differential diagnosis among various dementias is crucial for effective treatment of Alzheimer's disease (AD). The study began with searching for novel blood-based neuronal extracellular vesicles (EVs) that are more enriched in the brain regions vulnerable to AD development and progression. With extensive proteomic profiling, GABRD and GPR162 were identified as novel brain regionally enriched plasma EVs markers. The performance of GABRD and GPR162, along with the AD molecule pTau217, was tested using the self-developed and optimized nanoflow cytometry-based technology, which not only detected the positive ratio of EVs but also concurrently presented the corresponding particle size of the EVs, in discovery (n = 310) and validation (n = 213) cohorts. Plasma GABRD+- or GPR162+-carrying pTau217-EVs were significantly reduced in AD compared with healthy control (HC). Additionally, the size distribution of GABRD+- and GPR162+-carrying pTau217-EVs were significantly different between AD and non-AD dementia (NAD). An integrative model, combining age, the number and corresponding size of the distribution of GABRD+- or GPR162+-carrying pTau217-EVs, accurately and sensitively discriminated AD from HC [discovery cohort, area under the curve (AUC) = 0.96; validation cohort, AUC = 0.93] and effectively differentiated AD from NAD (discovery cohort, AUC = 0.91; validation cohort, AUC = 0.90). This study showed that brain regionally enriched neuronal EVs carrying pTau217 in plasma may serve as a robust diagnostic and differential diagnostic tool in both clinical practice and trials for AD.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Humans , Alzheimer Disease/diagnosis , Diagnosis, Differential , NAD , Proteomics
16.
Transl Neurodegener ; 13(1): 12, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38414054

ABSTRACT

The aetiologies and origins of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), are complex and multifaceted. A growing body of evidence suggests that the gut microbiome plays crucial roles in the development and progression of neurodegenerative diseases. Clinicians have come to realize that therapeutics targeting the gut microbiome have the potential to halt the progression of neurodegenerative diseases. This narrative review examines the alterations in the gut microbiome in AD, PD, ALS and HD, highlighting the close relationship between the gut microbiome and the brain in neurodegenerative diseases. Processes that mediate the gut microbiome-brain communication in neurodegenerative diseases, including the immunological, vagus nerve and circulatory pathways, are evaluated. Furthermore, we summarize potential therapeutics for neurodegenerative diseases that modify the gut microbiome and its metabolites, including diets, probiotics and prebiotics, microbial metabolites, antibacterials and faecal microbiome transplantation. Finally, current challenges and future directions are discussed.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Gastrointestinal Microbiome , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/therapy , Parkinson Disease/therapy
17.
Phytochemistry ; 220: 114011, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367793

ABSTRACT

Chemical investigation of the culture extract of an endophyte Xylaria curta YSJ-5 from Alpinia zerumbet (Pers.) Burtt. et Smith resulted in the isolation of eight previously undescribed compounds including five eremophilane sesquiterpenes xylarcurenes A-E, one norsesquiterpene xylarcurene F, and two α-pyrone derivatives xylarpyrones A-B together with eight known related derivatives. Their chemical structures were extensively established based on the 1D- and 2D-NMR spectroscopic analysis, modified Mosher's method, electronic circular dichroism calculations, single-crystal X-ray diffraction experiments, and the comparison with previous literature data. All these compounds were tested for in vitro cytotoxic, anti-inflammatory, α-glucosidase inhibitory, and antibacterial activities. As a result, 6-pentyl-4-methoxy-pyran-2-one was disclosed to display significant antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with minimal inhibitory concentration value of 6.3 µg/mL.


Subject(s)
Ascomycota , Methicillin-Resistant Staphylococcus aureus , Sesquiterpenes , Pyrones/chemistry , Molecular Structure , Sesquiterpenes/chemistry , Anti-Bacterial Agents/chemistry
18.
Nucleic Acids Res ; 52(5): 2142-2156, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38340342

ABSTRACT

Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.


Subject(s)
DNA Topoisomerases, Type I , G-Quadruplexes , Transcription, Genetic , Humans , DNA/chemistry , DNA Replication , DNA Topoisomerases, Type I/metabolism , Ligands , Topoisomerase I Inhibitors/pharmacology
19.
ACS Appl Mater Interfaces ; 16(2): 2330-2340, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38165730

ABSTRACT

It remains a tremendous challenge to achieve high-efficiency bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) for hydrogen production by water splitting. Herein, a novel hybrid of 0D nickel nanoparticles dispersed on the one-dimensional (1D) molybdenum carbide micropillars embedded in the carbon layers (Ni/Mo2C@C) was successfully prepared on nickel foam by a facile pyrolysis strategy. During the synthesis process, the nickel nanoparticles and molybdenum carbide were simultaneously generated under H2 and C2H2 mixed atmospheres and conformally encapsulated in the carbon layers. Benefiting from the distinctive 0D/1D heterostructure and the synergistic effect of the biphasic Mo2C and Ni together with the protective effect of the carbon layer, the reduced activation energy barriers and fast catalytic reaction kinetics can be achieved, resulting in a small overpotential of 96 mV for the HER and 266 mV for the OER at the current density of 10 mA cm-2 together with excellent durability in 1.0 M KOH electrolyte. In addition, using the developed Ni/Mo2C@C as both the cathode and anode, the constructed electrolyzer exhibits a small voltage of 1.55 V for the overall water splitting. The novel designed Ni/Mo2C@C may give inspiration for the development of efficient bifunctional catalysts with low-cost transition metal elements for water splitting.

20.
Neurobiol Aging ; 134: 106-114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056216

ABSTRACT

Based on the 'AT(N)' system, individuals with normal amyloid biomarkers but abnormal tauopathy or neurodegeneration biomarkers are classified as non-Alzheimer's disease (AD) pathologic change. This study aimed to assess the long-term clinical and cognitive trajectories of individuals with non-AD pathologic change among older adults without dementia, comparing them to those with normal AD biomarkers and AD pathophysiology. Analyzing Alzheimer's Disease Neuroimaging Initiative data, we evaluated clinical outcomes and conversion risk longitudinally using mixed effects models and multivariate Cox proportional hazard models. We found that compared to individuals with A-T-N-, those with abnormal tauopathy or neurodegeneration biomarkers (A-T + N-, A-T-N + , and A-T + N + ) had a faster rate of cognitive decline and disease progression. Individuals with A-T + N + had a faster rate of decline than those with A-T + N-. Additionally, in individuals with the same baseline tauopathy and neurodegeneration biomarker status, the presence of baseline amyloid could accelerate cognitive decline and clinical progression. These findings provide a foundation for future studies on non-AD pathologic change and its comparison with AD pathophysiology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Tauopathies , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Longitudinal Studies , Amyloid beta-Peptides , Cognitive Dysfunction/psychology , Biomarkers , Disease Progression , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...