Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(29): 17898, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35833806

ABSTRACT

Correction for 'Distinct spin-lattice and spin-phonon interactions in monolayer magnetic CrI3' by Lucas Webster et al., Phys. Chem. Chem. Phys., 2018, 20, 23546-23555, https://doi.org/10.1039/C8CP03599G.

2.
ACS Nano ; 15(6): 10444-10450, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34075751

ABSTRACT

Using polarization-resolved Raman spectroscopy, we investigate layer number, temperature, and magnetic field dependence of Raman spectra in one- to four-layer CrI3. Layer-number-dependent Raman spectra show that in the paramagnetic phase a doubly degenerated Eg mode of monolayer CrI3 splits into one Ag and one Bg mode in N-layer (N > 1) CrI3 due to the monoclinic stacking. Their energy separation increases in thicker samples until an eventual saturation. Temperature-dependent measurements further show that the split modes tend to merge upon cooling but remain separated until 10 K, indicating a failed attempt of the monoclinic-to-rhombohedral structural phase transition that is present in the bulk crystal. Magnetic-field-dependent measurements reveal an additional monoclinic distortion across the magnetic-field-induced layered antiferromagnetism-to-ferromagnetism phase transition. We propose a structural change that consists of both a lateral sliding toward the rhombohedral stacking and a decrease in the interlayer distance to explain our experimental observations.

3.
Phys Chem Chem Phys ; 20(36): 23546-23555, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30183024

ABSTRACT

We apply the density-functional theory to study various phases (including non-magnetic (NM), anti-ferromagnetic (AFM), and ferromagnetic (FM)) in monolayer magnetic chromium triiodide (CrI3), a recently fabricated 2D magnetic material. It is found that: (1) the introduction of magnetism in monolayer CrI3 gives rise to metal-to-semiconductor transition; (2) the electronic band topologies as well as the nature of direct and indirect band gaps in either AFM or FM phases exhibit delicate dependence on the magnetic ordering and spin-orbit coupling; and (3) the phonon modes involving Cr atoms are particularly sensitive to the magnetic ordering, highlighting distinct spin-lattice and spin-phonon coupling in this magnet. First-principles simulations of the Raman spectra demonstrate that both frequencies and intensities of the Raman peaks strongly depend on the magnetic ordering. The polarization dependent A1g modes at 77 cm-1 and 130 cm-1 along with the Eg mode at about 50 cm-1 in the FM phase may offer a useful fingerprint to characterize this material. Our results not only provide a detailed guiding map for experimental characterization of CrI3, but also reveal how the evolution of magnetism can be tracked by its lattice dynamics and Raman response.

4.
Nano Lett ; 16(2): 1404-9, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26757027

ABSTRACT

We investigate the ultralow-frequency Raman response of atomically thin ReS2, a special type of two-dimensional (2D) semiconductors with unique distorted 1T structure. Bilayer and few-layer ReS2 exhibit rich Raman spectra at frequencies below 50 cm(-1), where a panoply of interlayer shear and breathing modes are observed. The emergence of these interlayer phonon modes indicate that the ReS2 layers are coupled and orderly stacked. Whereas the interlayer breathing modes behave similarly to those in other 2D layered crystals, the shear modes exhibit distinctive behavior due to the in-plane lattice distortion. In particular, the two shear modes in bilayer ReS2 are nondegenerate and clearly resolved in the Raman spectrum, in contrast to the doubly degenerate shear modes in other 2D materials. By carrying out comprehensive first-principles calculations, we can account for the frequency and Raman intensity of the interlayer modes and determine the stacking order in bilayer ReS2.

5.
Sci Rep ; 5: 16646, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26568454

ABSTRACT

Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first- principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as the phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.

6.
Nanoscale Res Lett ; 10(1): 1040, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26334543

ABSTRACT

One-side semihydrogenated monolayers of carbon, silicon, germanium, and their binary compounds with different configurations of hydrogen atoms are investigated by density functional theory. Among three considered configurations, zigzag, other than the most studied chair configuration, is energetically the most favorable structure of one-side semihydrogenation. Upon semihydrogenation, the semimetallic silicene, germanene, and SiGe become semiconductors, while the band gap in semiconducting SiC and GeC is reduced. Semihydrogenated silicene, germanene, SiGe, and GeC with chair configuration are found to be ferromagnetic semiconductors. For semihydrogenated SiC, it is ferromagnetic when all hydrogen atoms bond with silicon atoms, while an antiferromagnetic coupling is predicted when all hydrogen atoms bond with carbon atoms. The effect of interatomic distance between two neighboring magnetic atoms to the ferromagnetic or antiferromagnetic coupling is studied. For comparison, properties of one-side and both-side fully hydrogenated group-IV monolayers are also calculated. All fully hydrogenated group-IV monolayers are nonmagnetic semiconductors with band gaps larger than those of their semihydrogenated counterparts.

7.
Nano Lett ; 14(11): 6393-9, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25254626

ABSTRACT

Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

8.
Phys Rev Lett ; 103(8): 086802, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19792747

ABSTRACT

We have systematically investigated the effect of oxidation on the structural and electronic properties of graphene based on first-principles calculations. Energetically favorable atomic configurations and building blocks are identified, which contain epoxide and hydroxyl groups in close proximity with each other. Different arrangements of these units yield a local-density approximation band gap over a range of a few eV. These results suggest the possibility of creating and tuning the band gap in graphene by varying the oxidation level and the relative amount of epoxide and hydroxyl functional groups on the surface.

9.
J Chem Phys ; 120(18): 8463-8, 2004 May 08.
Article in English | MEDLINE | ID: mdl-15267771

ABSTRACT

We have studied the electronic structures of icosahedral Ti(N) clusters (N=13, 19, 43, and 55) by using a real-space first-principles cluster method with generalized gradient approximation for exchange-correlation potential. The hexagonal close-packed and fcc close-packed clusters have been studied additionally for comparisons. It is found that the icosahedral structures are the most stable ones except for Ti(43), where fcc close-packed structure is favorable in energy. We present and discuss the variation of bond length, the features of the highest occupied molecular orbitals and the lowest unoccupied molecular orbital, the evolution of density of states, and the magnetic moment in detail. The results are in good agreement with the predictions from the collision-induced dissociation and size-selected anion photoelectron spectroscopy experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...