Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; : 133413, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945723

ABSTRACT

Dysphagia has emerged as a serious health issue facing contemporary society. Consuming thickened liquids is an effective approach for improving the swallowing safety for dysphagia patients. The thickening effect of chia seed gum (CSG), a novel thickener, in different dispersing media (water, orange juice, and skim milk) was investigated. Moreover, the potential application of CSG for dysphagia management was evaluated by comparison with xanthan gum (XG) and guar gum (GG). The thickened liquids prepared with 0.4 %-1.2 % (w/v) CSG, XG, and GG could be classified into levels 1-4, 2-4, and 1-3, respectively, according to the International Dysphagia Diet Standardization Initiative (IDDSI) framework. All the thickened liquids displayed shear-thinning characteristics that facilitated safe swallowing. The viscosities (η50) of CSG dissolved in water (0.202-1.027 Pa·s) were significantly greater than those of CSG dissolved in orange juice (0.070-0.690 Pa·s) and skim milk (0.081-0.739 Pa·s), indicating that CSG had a greater thickening effect in water than in orange juice and skim milk. Compared with those prepared with GG, the thickened liquids prepared with CSG and XG exhibited greater viscoelasticity, better water-holding capacity, and more compact networks. The findings suggested that CSG can be used as a potential thickener for thickening liquid foods to manage dysphagia.

2.
Int J Biol Macromol ; 273(Pt 2): 133162, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878925

ABSTRACT

Calcium ß-hydroxy-ß-methylbutyrate (CaHMB), a functional calcium salt, is used to maintain and improve muscle health. Here, a new hydrogel material prepared from alginate (ALG) with three M/G ratios (1:1, 2:1, and 1:2) and CaHMB (0-2 mg/mL) was investigated. CaHMB regulates the formation and properties of ALG hydrogels through chelation and hydrogen bonding. When the M/G ratio was 2:1, the anionic groups of CaHMB containing carboxyl and hydroxyl groups formed hydrogen bonds with the polysaccharide chains, hindering the capture of Ca2+ by the G-residue fragments of ALG, which in turn retarded the gelation process. The noncalcium cross-linked polysaccharide chain structure of ALG and the anionic group of CaHMB also affected the water distribution in the hydrogel, especially when M residue content ≥G residue content. Lower M/G ratios and higher CaHMB concentrations could increase the number of "egg box" crosslinking junctions of calcium alginate, and the microstructure was denser in the gel pores, resulting in a stronger gel strength and more free water bound in the gel matrix. This study provides a theoretical and methodological basis for the design of novel hydrogels by studying the crosslinking features of ALG/CaHMB.

3.
Food Chem X ; 22: 101466, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38808164

ABSTRACT

This study focused on binary hydrogels constructed from lotus rhizome starch (LRS) and three types of carrageenan (κ-C, ι-C, and λ-C). The enthalpy of LRS gelatinization was reduced by 32.1%-88.4% with the incorporation of carrageenan. Compared with ι-C and λ-C, the conformations of κ-C more facilitated the development of the binary hydrogel network structure. The ability of the LRS/carrageenan binary hydrogel to immobilize water was mainly related to the effect of different types of carrageenan on starch molecular ordering. LRS-based hydrogels were recognized as level 4 in the International Dysphagia Diet Standardization Initiative (IDDSI) framework. Nevertheless, the incorporation of carrageenan significantly reduced the ability of the LRS hydrogel to resist stress under large deformations, which might be favorable to oral processing and swallowing. This research provides preliminary evidence for relevant industries to use carrageenan to adjust LRS hydrogel properties and improve the quality of starch-based foods for dysphagia management.

4.
J Sci Food Agric ; 104(6): 3749-3756, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38234140

ABSTRACT

BACKGROUND: Laboratory scale experiments have shown that curdlan and gellan gum gelled together as curdlan/gellan gum (CG) hybrid gels showed better gel properties than the individual curdlan and gellan gum. In this study, CG and black wolfberry anthocyanin (BWA), CG and maltitol (ML) hybrid gels were constructed using CG hybrid gel as matrix. The effects of BWA or ML on the gel properties and microstructure of CG hybrid gels were investigated and a confectionery gel was developed. RESULTS: The presence of BWA increased the storage modulus (G') value of CG at 0.1 Hz, whereas ML had little effect on the G' value of CG. The addition of BWA (5 g L-1 ) and ML (0.3 mol L-1 ) increased the melting and gelling temperatures of CG hybrid gels to 42.4 °C and 34.1 °C and 44.2 °C and 33.2 °C, respectively. Meanwhile, the relaxation time T22 in CG-ML and CG-BWA hybrid gels was reduced to 91.96 and 410.27 ms, indicating the strong binding between BWA and CG, ML and CG. The hydrogen bond interaction between BWA or ML and CG was confirmed by the shift in the hydroxyl stretching vibration peak. Moreover, the microstructures of CG-ML and CG-BWA hybrid gels were denser than that of CG. In addition, confectionery gel containing CG-BWA-ML has good chewing properties. CONCLUSION: These results indicated that the incorporation of BWA or ML could improve the structure of CG hybrid gels and assign a sustainability potential for the development of confectionery gels based on CG complex. © 2024 Society of Chemical Industry.


Subject(s)
Lycium , Maltose/analogs & derivatives , Sugar Alcohols , beta-Glucans , Anthocyanins , Polysaccharides, Bacterial/chemistry , Gels/chemistry , Rheology
5.
Carbohydr Polym ; 326: 121594, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142069

ABSTRACT

To develop composite hydrogels based on low acyl gellan gum (GG), the effect of puerarin (PUE) on the gel properties of GG was investigated. The results showed that the maximum storage modulus (G') of the 1.2 % GG/0.8 % PUE composite hydrogel was 377.4 Pa at 0.1 Hz, which was enhanced by 4.7-fold compared with that of 1.2 % GG. The melting temperature of this composite hydrogel increased from 74.1 °C to >80.0 °C. LF-NMR results showed that a significant amount of free water was present in the hydrogel matrix. The surface structure aggregation and the shrinkage of the honeycomb meshes in the composite hydrogel proved the cross-linking of PUE and GG. XRD, FTIR and molecular simulation results illustrated that hydrogen bonds were the most important factor controlling the interaction between GG and PUE. Thus, the GG/PUE composite hydrogel has good elasticity, thermal stability and water retention, which lays a good foundation for further application in the food industry.


Subject(s)
Hydrogels , Polysaccharides, Bacterial , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Water/chemistry
6.
Foods ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835251

ABSTRACT

The gelation of scallop Patinopecten yessoensis male gonad hydrolysates (SMGHs) and κ-carrageenan (KC) subjected to pH (2-8, 3-9) and NaCl/KCl stimuli-response was investigated. SMGHs/KC gels subjected to a NaCl response exhibited an increasing storage modulus G'from 2028.6 to 3418.4 Pa as the pH decreased from pH 8 to 2, with corresponding T23 fluctuating from 966.40 to 365.64 ms. For the KCl-treated group, SMGHs/KC gels showed an even greater G' from 4646.7 to 10996.5 Pa, with T23 fluctuating from 622.2 to 276.98 ms as the pH decreased from 9 to 3. The improved gel strength could be ascribed to the blueshift and redshift of hydroxyl groups and amide I peaks, enhanced enthalpy and peak temperature, and gathered characteristic diffraction peaks from SMGHs, KC, NaCl, and KCl. The CLSM and cryo-SEM images further reflected that SMGHs/KC gels showed more flocculation formation and denser and more homogeneous networks with smaller pore sizes in more acidic domains, especially when subjected to the KCl response. This research gives a theoretical and methodological understanding of the construction of salt- and pH-responsive SMGHs/KC hydrogels as novel functional soft biomaterials applied in food and biological fields.

7.
Int J Biol Macromol ; 253(Pt 2): 126508, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37633570

ABSTRACT

Studying the noncovalent interactions between proteins and polysaccharides is quite important mainly due to the wide number of applications such as developing pH-responsive complexes. Scallop Patinopecten yessoensis male gonad hydrolysates­sodium alginate (SMGHs-SA) was investigated as noncovalent complexes at pH from 1 to 10. The critical pH values pHC (around 6) and pHφ (around 4) were independent of the SMGHs-SA ratio, indicating the formation of soluble and insoluble complexes. The pH response of SMGHs-SA complexes was evaluated by investigating the rheological behavior, moisture distribution, functional group change and microstructure. Compared to the co-soluble and soluble complexes phases, the SMGHs-SA complexes had a higher storage modulus and viscosity as well as a lower relaxation time (T23) in the insoluble complexes phase (pHφ>3). Additionally, the amide I band and COO- stretching vibration peaks were redshifted and the amide A band vibration peaks were blueshifted by acidification. Electrostatic interactions and intermolecular/intramolecular hydrogen bonding led to SMGHs-SA agglomeration at pH 3, forming a uniform and dense gel network structure with strong gel strength and water-retention capacity. This study provides a theoretical and methodological basis for the design of novel pH-responsive complexes by studying SMGHs-SA complex coacervation.


Subject(s)
Alginates , Pectinidae , Animals , Male , Alginates/metabolism , Gonads/chemistry , Hydrogen-Ion Concentration , Amides/metabolism
8.
Food Chem ; 405(Pt A): 134759, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36335732

ABSTRACT

The aim of this study was to investigate the effect of gellan gum (GG) on the cold gelation of large yellow croaker roe protein isolate (pcRPI). The water-holding ability and storage modulus of the pcRPI-GG binary gels increased with the GG concentration, where the storage modulus of the pcRPI-0.2% GG gel was approximately 30.7 times that of the pure pcRPI gel. Compare to the other binary gels, pcRPI-0.2% GG gels exhibited a lower lacunarity and higher junction density, with a denser, more aggregated microstructure. Consequently, curcumin was embedded in pcRPI-0.2% GG gels, and simulated gastrointestinal digestion test results showed that GG addition effectively protected and slowed curcumin release in the gastrointestinal environment. These findings may contribute to elucidating the interaction of pcRPI with GG and demonstrate the potential of binary gels for the embedding and delivery of active substances.


Subject(s)
Curcumin , Perciformes , Animals , Curcumin/pharmacology , Polysaccharides, Bacterial/chemistry , Gels/chemistry
9.
Neural Regen Res ; 18(5): 1099-1106, 2023 May.
Article in English | MEDLINE | ID: mdl-36254999

ABSTRACT

Skin-derived precursor Schwann cells have been reported to play a protective role in the central nervous system. The neuroprotective effects of skin-derived precursor Schwann cells may be attributable to the release of growth factors that nourish host cells. In this study, we first established a cellular model of Parkinson's disease using 6-hydroxydopamine. When SH-SY5Y cells were pretreated with conditioned medium from skin-derived precursor Schwann cells, their activity was greatly increased. The addition of insulin-like growth factor-2 neutralizing antibody markedly attenuated the neuroprotective effects of skin-derived precursor Schwann cells. We also found that insulin-like growth factor-2 levels in the peripheral blood were greatly increased in patients with Parkinson's disease and in a mouse model of Parkinson's disease. Next, we pretreated cell models of Parkinson's disease with insulin-like growth factor-2 and administered insulin-like growth factor-2 intranasally to a mouse model of Parkinson's disease induced by 6-hydroxydopamine and found that the level of tyrosine hydroxylase, a marker of dopamine neurons, was markedly restored, α-synuclein aggregation decreased, and insulin-like growth factor-2 receptor down-regulation was alleviated. Finally, in vitro experiments showed that insulin-like growth factor-2 activated the phosphatidylinositol 3 kinase (PI3K)/AKT pathway. These findings suggest that the neuroprotective effects of skin-derived precursor Schwann cells on the central nervous system were achieved through insulin-like growth factor-2, and that insulin-like growth factor-2 may play a neuroprotective role through the insulin-like growth factor-2 receptor/PI3K/AKT pathway. Therefore, insulin-like growth factor-2 may be an useful target for Parkinson's disease treatment.

10.
Food Chem ; 394: 133482, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35777253

ABSTRACT

The involvement of hydrogen bonding and hydrophobic interactions in a mixture of scallop (Patinopecten yessoensis) male gonad hydrolysates (SMGHs) and guar gum (GG) or locust-bean gum (LBG) was investigated using guanidine hydrochloride (GuHCl) and urea treatments in this study. The addition of GG and LBG (5.56 mg/mL) increased the viscosity of SMGHs at 0.1 s-1 by almost 2.5-fold and 1.7-fold, respectively, reaching 254.8 and 177.0 Pa·s. After treatment with GuHCl or urea, the mixed gels (SMGHs/GG and SMGHs/LBG) became relatively transparent and more fluid, as the viscosity significantly reduced. Moreover, changes of moisture distribution and conformational characteristics suggested that hydrogen bonding and hydrophobic interactions were the main intermolecular forces in the mixed gels of SMGHs and GG or LBG. Furthermore, the SMGHs/GG and SMGHs/LBG mixtures yielded strong gels with viscous network structures, indicating that these materials can be used as thickening agents in food systems.


Subject(s)
Pectinidae , Plant Gums , Animals , Galactans/chemistry , Gels/chemistry , Gonads/chemistry , Male , Mannans/chemistry , Pectinidae/chemistry , Plant Gums/chemistry , Polysaccharides/analysis , Urea/analysis
11.
J Food Sci ; 87(7): 2953-2964, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35686600

ABSTRACT

The combination of κ-Carrageenan (KC) and konjac gum (KGM) were introduced to examine the impact on gelation and microstructural behaviors of scallop male gonads hydrolysates (SMGHs) and the involvement of intermolecular forces. In terms of G' response of SMGHs/KGM/KC, it obviously enhanced by 3.6- and 108.5-fold than controls of KGM/KC and SMGHs/KC at 0.1 Hz, accompanying increasing melting temperatures from 27.9 (KGM/KC) and 30.0 (SMGHs/KC) to 33.7°C (SMGHs/KGM/KC), respectively. Additionally, SMGHs/KGM/KC with decreasing relaxation time T23 and blue shift of hydroxyl group than controls suggested higher water retention capacity and ordered conformation. Moreover, SMGHs/KGM/KC formed compact networks with thick walls as reflected by cryo-SEM and showed rougher surface with more aggregation as reflected by AFM. Furthermore, electrostatic in couple with hydrophobic interactions were dominant interactions, while hydrogen bonds were involved in subordinately in SMGHs/KGM/KC. PRACTICAL APPLICATION: Scallop (Patinopecten yessoensis) male gonads are always discarded during processing despite high-protein content and edibility. In the current research, scallop male gonad hydrolysates (SMGHs) exhibited gelation behavior, which have a potential role in developing marine source protein as a functional food base such as kamaboko gels, can, sausage and spread and even delivery vehicles for bioactive compounds.


Subject(s)
Amorphophallus , Pectinidae , Animals , Carrageenan/chemistry , Gels/chemistry , Male , Mannans/chemistry , Pectinidae/chemistry , Protein Hydrolysates , Proteins
12.
J Food Sci ; 87(6): 2504-2514, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35603811

ABSTRACT

The complex coacervation between scallop (Patinopecten yessoensis) female gonad protein isolates (SFGPIs) and sodium alginate (SA) was determined by the turbidimetric method. The impact of pH, total biopolymer concentration, biopolymer blend ratio, and various salt ionic on the mechanisms governing the complex coacervation of SFGPIs-SA complexes were also investigated. For the SFGPIs:SA ratio of 2:1 without adding NaCl, insoluble and soluble complexes were observed at pH 5.8 (pHφ1 ) and pH 8.2 (pHc ) with the optimum biopolymer interactions appearing at pH 2.6 (pHopt ). The maximum turbidity value increased with the increment of the total biopolymer concentration from 0.37 to 1.83 until attaining the critical value (0.75%). As the blend ratios rose from 1:3 to 12:1, the critical pH values (pHc , pHφ1 , and pHopt ) moved to higher pH. Furthermore, the addition of NaCl led to a remarkable decrease in turbidity over the whole pH region in SFGPIs-SA complexes. Moreover, monovalent ions (Na+ and K+ ) had the same effect on the formation of the SFGPIs-SA complex, whereas the divalent cations (Mg2+ and Ca2+ ) lessened the complex formation in comparison with the monovalent ions. This study offers a methodological and theoretical basis for the design of complex SFGPIs-SA systems by understanding the complex coacervation under different conditions. PRACTICAL APPLICATION: In recent years, several protein-polysaccharides complexes have been widely applied in food and biological systems. Scallop (Patinopecten yessoensis) female gonads are deemed as good marine sources for developing protein matrices on account of their high protein content and nutrients. In our study, the effects of different conditions on the mechanisms governing the complex coacervation of SFGPI-SA mixtures were investigated, and the instability of the system could be overcome by understanding the conditions for SFGPIs/SA complex formation, which have a feasible role in developing marine source-protein as a functional food base such as kamaboko gels, can, sausage, fat substitutes, and delivery vehicles for bioactive compounds.


Subject(s)
Alginates , Pectinidae , Alginates/analysis , Animals , Biopolymers/chemistry , Female , Gonads/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Pectinidae/chemistry , Proteins/analysis , Sodium Chloride/analysis , Static Electricity
13.
Neural Regen Res ; 17(6): 1357-1363, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34782582

ABSTRACT

Autophagy has been shown to play an important role in Parkinson's disease. We hypothesized that skin-derived precursor cells exhibit neuroprotective effects in Parkinson's disease through affecting autophagy. In this study, 6-hydroxydopamine-damaged SH-SY5Y cells were pretreated with a culture medium containing skin-derived precursors differentiated into Schwann cells (SKP-SCs). The results showed that the SKP-SC culture medium remarkably enhanced the activity of SH-SY5Y cells damaged by 6-hydroxydopamine, reduced excessive autophagy, increased tyrosine hydroxylase expression, reduced α-synuclein expression, reduced the autophagosome number, and activated the PI3K/AKT/mTOR pathway. Autophagy activator rapamycin inhibited the effects of SKP-SCs, and autophagy inhibitor 3-methyladenine had the opposite effect. These findings confirm that SKP-SCs modulate the PI3K/AKT/mTOR pathway to inhibit autophagy, thereby exhibiting a neuroprotective effect in a cellular model of Parkinson's disease. This study was approved by the Animal Ethics Committee of Laboratory Animal Center of Nantong University (approval No. S20181009-205) on October 9, 2018.

14.
J Food Sci ; 87(1): 302-311, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34919279

ABSTRACT

The objective of this study was to investigate the properties of ternary composite gel of scallop (Patinopecten yessoensis) protein hydrolysates (SMGHs)/κ-carrageenan (KC)/xanthan gum (XG). The rheological properties, moisture-distribution, molecular structure, and microstructure of SMGNs/KC/XG gels were analyzed. The results showed that the G' value, melting temperature, and water holding capacity of SMGHs/KC/XG were higher than those of SMGHs, SMGHs/KC, and SMGHs/XG. FTIR spectrum showed the generation of hydrogen bonds between SMGHs and KC/XG, and the carboxylic acid group of XG interacts with SMGHs. Moreover, the cryo-SEM results showed that SMGHs/KC/XG exhibited a tighter, smoother, and more aggregated microstructure than those of SMGHs, SMGHs/KC, and SMGHs/XG. These results indicate that the gel and microstructural properties of SMGHs are significantly improved by addition of KC and XG, and SMGHs/KC/XG has potential to be used as functional hydrogels for food, pharmaceutical, and biomedical applications. PRACTICAL APPLICATION: Scallop (Patinopecten yessoensis) male gonads are rich in protein and usually regarded as byproducts during adductor processing. Because of its gelation properties, scallop male gonads have potential to be used as functional hydrogels for food. The SMGHs/KC/XG ternary composite gel showed excellent gel properties, which would be potentially applied in delivery system in food and biological fields. Further study is undergoing to apply SMGHs/KC/XG to embed bioactive compounds, such as curcumin and ß-carotene.


Subject(s)
Pectinidae , Protein Hydrolysates , Animals , Carrageenan , Gonads , Hydrogels , Male , Polysaccharides, Bacterial , Rheology
15.
J Food Sci ; 86(9): 4001-4016, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34318481

ABSTRACT

Here, a novel decapeptide IVTNWDDMEK with Maillard reactivity derived from scallop Chlamys farreri mantle was identified. The structural characteristics and in vitro hepatoprotective effects of IVTNWDDMEK conjugated with ribose were further investigated. The changes in decapeptide structures were determined by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and atomic force microscopy (AFM), and the modification sites induced by Maillard reaction of IVTNWDDMEK and ribose were monitored by high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). Maillard reaction products (MRPs) of IVTNWDDMEK-ribose demonstrate hepatoprotective benefits through the suppression of DNA damage and apoptosis induced by oxidative stress in human HepG2 cells in addition to enhancing the antioxidant activities. Moreover, after treatment with decapeptide-ribose MRPs, the activities of cellular antioxidative enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rx) were remarkably increased, while the content of malondialdehyde (MDA) was decreased compared with H2 O2 - treated group, thereby enhancing the intracellular antioxidant defenses. These findings demonstrate the potential utilization of decapeptide IVTNWDDMEK-ribose MRPs as food antioxidants to suppress oxidative damage. PRACTICAL APPLICATION: In recent years, several food-derived bioactive peptides and their derivatives are regarded as good dietary antioxidants for reducing oxidative stress and improving liver function. Here, a novel Maillard reactive decapeptide IVTNWDDMEK, identified from scallop mantle hydrolysates by peptidomics in the previous study was synthesized. Then, the correlation between intercellular antioxidant activities and chemical structure changes of IVTNWDDMEK-ribose Maillard reaction conjugates was further studied. The preferable hepatoprotective activities of decapeptide IVTNWDDMEK-ribose MRPs indicated that these MRPs could be potentially utilized as food antioxidants or additives in the production of nutritional foods.


Subject(s)
Glycation End Products, Advanced , Maillard Reaction , Peptides , Protective Agents , Ribose , Antioxidants/pharmacology , Apoptosis/drug effects , DNA Damage/drug effects , Peptides/pharmacology , Protective Agents/chemistry , Ribose/chemistry , Ribose/pharmacology , Tandem Mass Spectrometry
16.
Food Funct ; 12(12): 5407-5416, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33988217

ABSTRACT

In this paper, some cationic dipeptides from scallop (Patinopecten yessoensis) male gonads (SMGs), which can synergistically gel with ι-carrageenan (ι-C), were screened by the in silico approach. Fourteen protein sequences of SMGs were obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nano liquid chromatography-mass spectrometry/mass spectrometry (nanoLC-MS/MS) analysis and were then hydrolyzed via in silico simulation. A total of 414 sequences were obtained with 56 duplicates, half of which were positively charged at pH 7. Among the cation sequences, 171 had good water solubility, including two amino acids (Lys and Arg). The molecular weight analysis of the cationic water-soluble sequences showed that 0.2-0.3 kDa accounted for the highest proportion. Based on the obvious synergistic effect of Lys and ι-C, 11 Lys-containing dipeptides, including Ser-Lys (SK), Thr-Lys (TK), Trp-Lys (WK), Ala-Lys (AK), Leu-Lys (LK), Gly-Lys (GK), Val-Lys (VK), Cys-Lys (CK), Asn-Lys (NK), Phe-Lys (FK), and Met-Lys (MK), were finally screened out to study gelation with ι-C. It was found that the dipeptides/ι-C formed firm gels except WK/ι-C. The values of the storage modulus (G') of 11 dipeptides/ι-C were investigated by a rheometer. The G' of 8 dipeptides/ι-C was higher than 1000 Pa. These results indicated that the in silico-screened dipeptides from SMGs can form composite gels with ι-C, which can be used for the design and development of functional hydrogels.


Subject(s)
Carrageenan/chemistry , Cations , Dipeptides/chemistry , Gels/chemistry , Pectinidae/metabolism , Amino Acid Sequence , Amino Acids/analysis , Animals , Computer Simulation , Female , Male , Peptide Fragments , Rheology , Tandem Mass Spectrometry , Trypsin
17.
J Sci Food Agric ; 101(14): 5948-5955, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33838054

ABSTRACT

BACKGROUND: Large yellow croaker (Pseudosciaena crocea) roe is the main by-product in the processing of large yellow croaker. Previous studies have found that its protein isolates are composed of vitellogenin, as well as vitellogenin B and C, having good functional properties. (-)-Epigallocatechin-3-gallate (EGCG) is a natural antioxidant component that can be combined with protein to improve antioxidant activity and structural characteristics of protein. RESULTS: EGCG was bound with the P. crocea roe protein isolate (pcRPI) by the free radical method to prepare the conjugate. The formation of pcRPI-EGCG conjugates was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography, which showed that the calculated weight-average molar masses of native-pcRPI and pcRPI-EGCG conjugates were 86.9 and 215.3 kDa, respectively. The results of fluorescence, ultraviolet, circular and infrared spectra indicated that the conjugation of EGCG with native-pcRPI changed the secondary and tertiary structure of native-pcRPI. The pcRPI-EGCG conjugates exhibited higher thermal stability than native-pcRPI. The radical scavenging and reducing power of native-pcRPI were increased by 2.0-2.5- and 1.4-fold, respectively, after the EGCG-grafting reaction. CONCLUSION: These results indicate that the binding of pcRPI and EGCG effectively improved the antioxidant properties and structural characteristics of the pcRPI. © 2021 Society of Chemical Industry.


Subject(s)
Antioxidants/chemistry , Catechin/analogs & derivatives , Fish Proteins/chemistry , Food Preservation/methods , Food Preservatives/chemistry , Ovum/chemistry , Animals , Catechin/chemistry , Female , Food Preservation/instrumentation , Ovary/chemistry , Perciformes , Protein Conformation
18.
Int J Biol Macromol ; 182: 244-251, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33838193

ABSTRACT

Gel properties of hydrogel-forming by Ala-Lys dipeptide (AK) and iota-carrageenan (ι-C) were investigated by rheological behavior, fourier transform infrared analysis, cryo-scanning electron microscopy, low field-NMR relaxometry and magnetic resonance imaging. Iota-carrageenan was changed from a liquid to a gel with the addition of AK, and the existence of AK significantly increased the storage modulus (G') of ι-C from 590.4 to 1077.8 Pa. In the ι-C/AK gel, the blue-shift of OH stretching and water deformation were observed, meanwhile, the presence of amide I band at 1682 cm-1 was observed. The network of ι-C/AK gel showed a dense honeycomb structure with flocculating continuous phase and rough entanglement morphology. After adding AK, the water free in the pores of ι-C entered the ι-C/AK gel matrix, and the binding capacity of bound water was enhanced. These scenarios proved that the AK as the cationic dipeptide could control the conversion of negatively charged ι-C from an original random structure to a helical structure due to electrostatic interactions and hydrogen bonds. This study provides a new opportunity for the peptides into carbohydrate-based gel matrices, which could provide insights for the further application of ι-C/AK gels in the fields of food industry, tissue engineering and drug delivery.


Subject(s)
Carrageenan , Dipeptides , Gels , Hydrogels/chemistry , Magnetic Resonance Spectroscopy , Rheology
19.
J Food Sci ; 86(5): 2024-2034, 2021 May.
Article in English | MEDLINE | ID: mdl-33884631

ABSTRACT

This study evaluated the gel and microstructure properties of scallop (Patinopecten yessoensis) male gonads hydrolysates (SMGHs) combined with xanthan gum (XG). SMGHs/XG hydrogel matrix properties and structures were elucidated via different analysis tools such as rheometry, LF-NMR, FTIR, AFM, and Cryo-SEM. The addition of XG significantly improved the rheological properties of SMGHs, as indicated by 3.1-fold G' and 1.3-fold melting temperature with increasing the XG dose to 5.6 mg/ml. The corresponding decrease in the T23 relaxation time from 450.3 to 365.6 ms also signified the strong binding between SMGHs and XG. SMGHs/XG also had a higher proton density (T1 and T2 weighted images) due to the higher bound and free water content of the hybrid gel systems, respectively. Additionally, the blueshift in the amide I and II bands in SMGHs/XG further indicated stronger electrostatic interactions between SMGHs and XG. Such scenarios resulted in a well-distributed and compact network with a rougher surface of SMGHs/XG in comparison to pure SMGHs and XG, as assessed by AFM and SEM. These results suggest that SMGHs/XG gel could be a potential hybrid gel applied in the food industry. PRACTICAL APPLICATION: Scallop (Patinopecten yessoensis) male gonads are edible, but are usually discarded during processing of scallop adductor. Because of its rich nutrition and gelation properties, scallop male gonads have a potential role in developing marine source-protein as a functional food base. The SMGHs/XG binary gel would be potentially applied in delivery system in food and biological fields. Further study is undergoing to apply SMGHs/XG binary gel to embed bioactive compounds, such as curcumin and ß-carotene.


Subject(s)
Gonads/chemistry , Hydrogels/chemistry , Pectinidae/chemistry , Polysaccharides, Bacterial/chemistry , Seafood/analysis , Tissue Extracts/chemistry , Animals , Male , Rheology
20.
J Food Sci ; 86(3): 792-802, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33565634

ABSTRACT

Various bond disrupting agents including NaCl, GuHCl, urea, and SDS were introduced to investigate the intermolecular interactions between scallop (Patinopecten yessoensis) male gonad hydrolysates (SMGHs) and κ-carrageenan (κ-C), which were monitored by changes in rheological property, water distribution, conformation characterization and microstructure by using rheometer, low field-NMR relaxometry, Fourier transform infrared (FTIR) spectroscopy, cryo-scanning electron microscopy (cryo-SEM), and confocal laser scanning microscopy. The results showed that the bond disrupting agents deteriorated the rheological property of SMGHs/κ-C in a dose-dependent manner. Indeed, at the same concentration of 2 M, NaCl deteriorated the SMGHs/κ-C more obviously than GuHCl and urea. In addition, SMGHs/κ-C with bond disrupting agents possessed higher relaxation times including T21 and T23 , indicating the migration to free water direction of bound and free water. Moreover, the FITR results showed the red-shift in water regions (amide A and B bands), amide I and II bands, and indicated the breakdown of hydrogen bonds and electrostatic interactions, indicating a disordered structure in SMGHs/κ-C by various bond disrupting agents. Furthermore, cryo-SEM results showed the change of SMGHs/κ-C from a homogeneous network to a looser and ruptured one with larger void spaces, and indicated the disrupted and tattered microstructure of SMGHs/κ-C by various bond disrupting agents. Additionally, SMGHs/κ-C as well showed less aggregates stained by RITC by bond disrupting agents. These results suggest that electrostatic interactions would be mainly involved in the maintenance of SMGHs/κ-C gel network. This study could provide theoretical and methodological basis for hydrogel products with modified gel strength and microstructure by understanding the intermolecular interactions in gel system. PRACTICAL APPLICATION: Scallop (Patinopecten yessoensis) male gonads as a high-protein part of scallop, is usually discarded during processing despite its edibility. In recent years, scallop male gonads are regarded as good sources to develop protein matrices due to their high protein content and numerous nutrients. In this study, scallop male gonad hydrolysates (SMGHs) were obtained by trypsin-treated process. The considerable gelation behavior of SMGHs indicated that the SMGHs could be potentially utilized as a novel thickener and additive in production of kamaboko gels, can, sausage and spread with marine flavor.


Subject(s)
Carrageenan/chemistry , Gels/chemistry , Pectinidae/chemistry , Animals , Colloids , Gonads/chemistry , Hydrolysis , Male , Proteins/chemistry , Seafood/analysis , Static Electricity , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...