Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Membr Biol ; 257(1-2): 25-36, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38285125

ABSTRACT

Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca2+ release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca2+ leak that normally constrains SR Ca2+ load. Abnormal large diastolic RyR2-mediated Ca2+ leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca2+ handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca2+ sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.


Subject(s)
Myocytes, Cardiac , Ryanodine Receptor Calcium Release Channel , Mice , Rats , Humans , Rabbits , Animals , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Heart Ventricles , Mammals/metabolism , Calcium/metabolism
2.
Cells ; 12(18)2023 09 08.
Article in English | MEDLINE | ID: mdl-37759456

ABSTRACT

Long-term alcohol consumption leads to cardiac arrhythmias including atrial fibrillation (AF), the most common alcohol-related arrhythmia. While AF significantly increases morbidity and mortality in patients, it takes years for an alcoholic individual undergoing an adaptive status with normal cardiac function to reach alcoholic cardiomyopathy. The underlying mechanism remains unclear to date. In this study, we assessed the functional role of JNK2 in long-term alcohol-evoked atrial arrhythmogenicity but preserved cardiac function. Wild-type (WT) mice and cardiac-specific JNK2dn mice (with an overexpression of inactive dominant negative (dn) JNK2) were treated with alcohol (2 g/kg daily for 2 months; 2 Mo). Confocal Ca2+ imaging in the intact mouse hearts showed that long-term alcohol prolonged intracellular Ca2+ transient decay, and increased pacing-induced Ca2+ waves, compared to that of sham controls, while cardiac-specific JNK2 inhibition in JNK2dn mice precluded alcohol-evoked Ca2+-triggered activities. Moreover, activated JNK2 enhances diastolic SR Ca2+ leak in 24 h and 48 h alcohol-exposed HL-1 atrial myocytes as well as HEK-RyR2 cells (inducible expression of human RyR2) with the overexpression of tGFP-tagged active JNK2-tGFP or inactive JNK2dn-tGFP. Meanwhile, the SR Ca2+ load and systolic Ca2+ transient amplitude were both increased in ventricular myocytes, along with the preserved cardiac function in 2 Mo alcohol-exposed mice. Moreover, the role of activated JNK2 in SR Ca2+ overload and enhanced transient amplitude was also confirmed in long-term alcohol-exposed HL-1 atrial myocytes. In conclusion, our findings suggest that long-term alcohol-activated JNK2 is a key driver in preserved cardiac function, but at the expense of enhanced cardiac arrhythmogenicity. Modulating JNK2 activity could be a novel anti-arrhythmia therapeutic strategy.


Subject(s)
Atrial Fibrillation , Humans , Animals , Mice , Ryanodine Receptor Calcium Release Channel , Ethanol/adverse effects , Myocytes, Cardiac , JNK Mitogen-Activated Protein Kinases , Protein Isoforms
3.
Chemistry ; 29(19): e202203748, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36717359

ABSTRACT

Gain of aromaticity or relief of antiaromaticity along a reaction path are important factors to consider in mechanism studies. Analysis of such changes along potential energy surfaces has historically focused on reactions in the electronic ground state (S0 ), but can also be used for excited states. In the lowest ππ* states, the electron counts for aromaticity and antiaromaticity follow Baird's rule where 4n π-electrons indicate aromaticity and 4n+2 π-electrons antiaromaticity. Yet, there are also cases where Hückel's rule plays a role in the excited state. The electron count reversals of Baird's rule compared to Hückel's rule explain many altered physicochemical properties upon excitation of (hetero)annulene derivatives. Here we illustrate how the gain of excited-state aromaticity (ESA) and relief of excited-state antiaromaticity (ESAA) have an impact on photoreactivity and photostability. Emphasis is placed on recent findings supported by the results of quantum chemical calculations, and photoreactions in a wide variety of areas are covered.

5.
Plants (Basel) ; 11(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015472

ABSTRACT

Plant lesion mutation usually refers to the phenomenon of cell death in green tissues before senescence in the absence of external stress, and such mutants also show enhanced resistance to some plant pathogens. The occurrence of lesion mimic mutants in rice is affected by gene mutation, reactive oxygen species accumulation, an uncontrolled programmed cell death system, and abiotic stress. At present, many lesion mimic mutants have been identified in rice, and some genes have been functionally analyzed. This study reviews the occurrence mechanism of lesion mimic mutants in rice. It analyzes the function of rice lesion mimic mutant genes to elucidate the molecular regulation pathways of rice lesion mimic mutants in regulating plant disease resistance.

6.
Heart Rhythm ; 19(9): 1548-1549, 2022 09.
Article in English | MEDLINE | ID: mdl-35654310
7.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1175-1182, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35730074

ABSTRACT

In this study, four types of mixed Larix olgensis and Fraxinus mandshurica plantations were selected according to the rows-mixing proportions (type Ⅰ: 5:3, type Ⅱ: 6:4, type Ⅲ: 5:5, type Ⅳ: 1:1). The see-mingly unrelated biomass models of L. olgensis and F. mandshurica were developed for obtaining biomass values, and the difference and composition of carbon storage in each forest layer and ecosystem were analyzed. The results showed that carbon storage of arbor layer in different stand types was 39.86-50.12 t·hm-2, the carbon storage of arbor layer inⅠ, Ⅱ and Ⅳ was significantly higher than that in type Ⅲ. The carbon storage of understory was 0.10-0.30 t·hm-2, with that in type Ⅱ being significantly higher than other types. Carbon storage of litter layer was 4.43-6.96 t·hm-2, with type Ⅱ and Ⅲ being significantly higher than those of the other types. In the soil layer, carbon storage was 34.97-54.66 t·hm-2. The carbon storage of soil layer in type Ⅱ was significantly greater than those in the other types. At the whole ecosystem level, carbon storage of type Ⅰ-Ⅳ was 90.43, 108.27, 85.83 and 89.92 t·hm-2, respectively. Type Ⅱ had significantly greater carbon storage than the other types. The arbor layer and soil layer were the major carbon pools in the ecosystem, which accounted for 43.3%-55.7% and 38.7%-50.5% of the total, respectively. Our results suggested that mixing by six rows of L. olgensis and four rows of F. mandshurica was better for future planting.


Subject(s)
Fraxinus , Larix , Carbon/analysis , China , Ecosystem , Soil
8.
Ecotoxicol Environ Saf ; 233: 113318, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35182799

ABSTRACT

Carboxin is a heterocyclic systemic fungicide, mainly used to prevent and control grain smut and wheat rust. Although its mammalian toxicity has been reported, its toxicity to acute exposure to aquatic animals is unknown. In our study, we used zebrafish as aquatic organisms to study Carboxin toxicity. Carboxin can cause developmental toxicity and cardiotoxicity in zebrafish embryos. Histopathological staining of cardiac sections reveals structural changes in zebrafish hearts, and fluorescence quantitative PCR results shows the heart developmental genes mRNA expression levels were disrupted significantly. Besides, carboxin can also cause oxidative stress and reactive oxygen species (ROS) accumulation in zebrafish embryos. The accumulation of ROS causes mitochondrial damage, which is where ATP energy is produced. So ATPase activities and gene expression level were measured and significantly decreased after exposure to carboxin. From the confocal images, the number of blood cells in the heart were decreased significantly after carboxin exposure. Besides, Carboxin exposure can inhibit myocardial cell proliferation. These are all causes to the heart failure, eventually leading to embryos death.


Subject(s)
Cardiotoxicity , Zebrafish , Animals , Carboxin/metabolism , Cardiotoxicity/metabolism , Embryo, Nonmammalian/metabolism , Oxidative Stress , Zebrafish/metabolism
9.
Circ Res ; 130(5): 711-724, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35086342

ABSTRACT

BACKGROUND: Oxidative stress in cardiac disease promotes proarrhythmic disturbances in Ca2+ homeostasis, impairing luminal Ca2+ regulation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the RyR2 (ryanodine receptor), and increasing channel activity. However, exact mechanisms underlying redox-mediated increase of RyR2 function in cardiac disease remain elusive. We tested whether the oxidoreductase family of proteins that dynamically regulate the oxidative environment within the SR are involved in this process. METHODS: A rat model of hypertrophy induced by thoracic aortic banding (TAB) was used for ex vivo whole heart optical mapping and for Ca2+ and reactive oxygen species imaging in isolated ventricular myocytes (VMs). RESULTS: The SR-targeted reactive oxygen species biosensor ERroGFP showed increased intra-SR oxidation in TAB VMs that was associated with increased expression of Ero1α (endoplasmic reticulum oxidoreductase 1 alpha). Pharmacological (EN460) or genetic Ero1α inhibition normalized SR redox state, increased Ca2+ transient amplitude and SR Ca2+ content, and reduced proarrhythmic spontaneous Ca2+ waves in TAB VMs under ß-adrenergic stimulation (isoproterenol). Ero1α overexpression in Sham VMs had opposite effects. Ero1α inhibition attenuated Ca2+-dependent ventricular tachyarrhythmias in TAB hearts challenged with isoproterenol. Experiments in TAB VMs and human embryonic kidney 293 cells expressing human RyR2 revealed that an Ero1α-mediated increase in SR Ca2+-channel activity involves dissociation of intraluminal protein ERp44 (endoplasmic reticulum protein 44) from the RyR2 complex. Site-directed mutagenesis and molecular dynamics simulations demonstrated a novel redox-sensitive association of ERp44 with RyR2 mediated by intraluminal cysteine 4806. ERp44-RyR2 association in TAB VMs was restored by Ero1α inhibition, but not by reducing agent dithiothreitol, as hypo-oxidation precludes formation of covalent bond between RyR2 and ERp44. CONCLUSIONS: A novel axis of intraluminal interaction between RyR2, ERp44, and Ero1α has been identified. Ero1α inhibition exhibits promising therapeutic potential by stabilizing RyR2-ERp44 complex, thereby reducing spontaneous Ca2+ release and Ca2+-dependent tachyarrhythmias in hypertrophic hearts, without causing hypo-oxidative stress in the SR.


Subject(s)
Heart Diseases , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Glycoproteins/metabolism , Ryanodine Receptor Calcium Release Channel , Animals , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium Signaling , Heart Diseases/metabolism , Isoproterenol/pharmacology , Myocytes, Cardiac/metabolism , Oxidoreductases/metabolism , Oxidoreductases/pharmacology , Rats , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
10.
Ecotoxicol Environ Saf ; 224: 112696, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34455182

ABSTRACT

Benoxacor (BN) is a highly effective antidote of dichloroacetamide herbicides generally used to protect crops from herbicidal damage. As a commonly used agrochemical, this herbicide antidote is continuously discharged in watercourses thus causing toxicity to aquatic organisms, and ultimately leading to contamination of the food chain. To date, its potential toxicity to the cardiac development of aquatic organisms has not been evaluated. In the present study, we have selected the zebrafish as a model to study the impact of BN on embryonic developmental and cardiac toxicity. The zebrafish embryos were exposed in 0.5, 1.0 and 2.0 mg/L BN from 5.5 to 72 h post-fertilization (hpf). The results indicated that the exposure to BN led to increased mortality and diminished heart and hatching rates in the embryos. BN exposure also brought pericardial edema (PE) and linear stretching of heart. Besides, exposure to BN induced an excessive accumulation of reactive oxygen species (ROS) in the zebrafish embryos and abnormal activities of the antioxidant enzymes, including catalase (CAT) and malondialdehyde (MDA). Moreover, exposure to BN caused serious cardiac toxicity of the embryos, accompanied by abnormality of heart development- and apoptosis-related genes. Surprisingly, astaxanthin (ASTA), as a common antioxidant, was found to be able to partially rescue the cardiac toxicity caused by BN, which indicated that ROS are probably the major reason for the resulting cardiotoxicity in zebrafish embryos. Our results suggest the need for a comprehensive safety evaluation of the regular consumption of benoxacor, which provides scientific basis for the development of health standards and assessment of potential risk in aquatic organisms or even human.

11.
Cell Signal ; 86: 110070, 2021 10.
Article in English | MEDLINE | ID: mdl-34217833

ABSTRACT

Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.


Subject(s)
Connexin 43 , Gap Junctions , Cell Communication , Connexin 43/metabolism , Gap Junctions/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Serine/metabolism , Threonine/metabolism
12.
J Mol Cell Cardiol ; 158: 72-81, 2021 09.
Article in English | MEDLINE | ID: mdl-34048725

ABSTRACT

BACKGROUND: Both gap junctional remodeling and interstitial fibrosis have been linked to impaired electrical conduction velocity (CV) and fatal ventricular arrhythmias in nonischemic heart failure (HF). However, the arrhythmogenic role of the ventricular gap junctional Cx43 in nonischemic HF remains in debate. Here, we assessed this in a newly developed arrhythmogenic canine model of nonischemic HF. METHODS AND RESULTS: Nonischemic HF was induced in canines by combined aortic valve insufficiency and aortic constriction. Left ventricular (LV) myocardium from HF dogs showed similar pathological changes to that of humans. HF dogs had reduced LV function, widened QRS complexes, and spontaneous nonsustained ventricular tachycardia. CV was measured in intact LV epicardium with high-density grid mapping. Total (Cx43-T) and nonphosphorylated Cx43 (Cx43-NP) and histological interstitial fibrosis were assessed from these mapped LV tissues. Longitudinal CV, which was slowed in HF (49 ± 1 vs. 65 ± 2 cm/s in Ctl), was positively correlated with reduced total junctional Cx43 and negatively correlated with markedly increased junctional Cx43-NP (2-fold) in HF. Cx43 dephosphorylation in HF was associated with enhanced colocalization of PP2A at the level of Cx43. Unchanged action potential upstroke and transverse CV were associated with unaltered Cx43 lateralization and interstitial fibrosis in the nonischemic HF canine LV. CONCLUSION: Our unique arrhythmogenic canine model of HF resembles human nonischemic HF (prior to the end stage). Cx43 remodeling occurs prior to the structural remodeling (with lack of fibrosis) in HF and it is crucial in slowed CV and ventricular arrhythmia development. Our findings suggest that altered Cx43 alone is arrhythmogenic and modulation of Cx43 has the anti-arrhythmic therapeutic potential for HF patients.


Subject(s)
Connexin 43/metabolism , Heart Failure/complications , Heart Failure/metabolism , Tachycardia, Ventricular/complications , Tachycardia, Ventricular/metabolism , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/metabolism , Ventricular Fibrillation/complications , Ventricular Fibrillation/metabolism , Action Potentials , Animals , Disease Models, Animal , Dogs , Electric Conductivity , Female , Fibrosis , Gap Junctions/metabolism , Heart Conduction System/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Male , Phosphorylation , Ventricular Function, Left
13.
Pflugers Arch ; 473(3): 351-362, 2021 03.
Article in English | MEDLINE | ID: mdl-33638007

ABSTRACT

Pathological remodeling includes alterations of ion channel function and calcium homeostasis and ultimately cardiac maladaptive function during the process of disease development. Biochemical assays are important approaches for assessing protein abundance and post-translational modification of ion channels. Several housekeeping proteins are commonly used as internal controls to minimize loading variabilities in immunoblotting protein assays. Yet, emerging evidence suggests that some housekeeping proteins may be abnormally altered under certain pathological conditions. However, alterations of housekeeping proteins in aged and diseased human hearts remain unclear. In the current study, immunoblotting was applied to measure three commonly used housekeeping proteins (ß-actin, calsequestrin, and GAPDH) in well-procured human right atria (RA) and left ventricles (LV) from diabetic, heart failure, and aged human organ donors. Linear regression analysis suggested that the amounts of linearly loaded total proteins and quantified intensity of total proteins from either Ponceau S (PS) blot-stained or Coomassie Blue (CB) gel-stained images were highly correlated. Thus, all immunoblotting data were normalized with quantitative CB or PS data to calibrate potential loading variabilities. In the human heart, ß-actin was reduced in diabetic RA and LV, while GAPDH was altered in aged and diabetic RA but not LV. Calsequestrin, an important Ca2+ regulatory protein, was significantly changed in aged, diabetic, and ischemic failing hearts. Intriguingly, expression levels of all three proteins were unchanged in non-ischemic failing human LV. Overall, alterations of human housekeeping proteins are heart chamber specific and disease context dependent. The choice of immunoblotting loading controls should be carefully evaluated. Usage of CB or PS total protein analysis could be a viable alternative approach for some complicated pathological specimens.


Subject(s)
Aging/metabolism , Biomarkers/analysis , Genes, Essential/physiology , Heart Diseases/metabolism , Immunoblotting/methods , Actins/analysis , Actins/biosynthesis , Aged , Animals , Calsequestrin/analysis , Calsequestrin/biosynthesis , Female , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/analysis , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/biosynthesis , Heart Atria/metabolism , Heart Ventricles/metabolism , Humans , Male , Middle Aged , Rabbits
14.
Pflugers Arch ; 473(3): 521-531, 2021 03.
Article in English | MEDLINE | ID: mdl-33594499

ABSTRACT

The transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective monovalent cation channel belonging to the TRP channel superfamily. TRPM4 is widely expressed in various tissues and most abundantly expressed in the heart. TRPM4 plays a critical role in cardiac conduction. Patients carrying a gain-of-function or loss-of-function mutation of TRPM4 display impaired cardiac conduction. Knockout or over-expression of TRPM4 in mice recapitulates conduction defects in patients. Moreover, recent studies have indicated that TRPM4 plays a role in hypertrophy and heart failure. Whereas the role of TRPM4 mediated by cardiac myocytes has been well investigated, little is known about TRPM4 and its role in cardiac fibroblasts. Here we show that in human left ventricular fibroblasts, TRPM4 exhibits typical Ca2+-activation characteristics, linear current-voltage (I-V) relation, and monovalent permeability. TRPM4 currents recorded in fibroblasts from heart failure patients (HF) are more than 2-fold bigger than those from control individuals (CTL). The enhanced functional TRPM4 in HF is not resulted from changed channel properties, as TRPM4 currents from both HF and CTL fibroblasts demonstrate similar sensitivity to intracellular calcium activation and extracellular 9-phenanthrol (9-phen) blockade. Consistent with enhanced TRPM4 activity, the protein level of TRPM4 is about 2-fold higher in HF than that of CTL hearts. Moreover, TRPM4 current in CTL fibroblasts is increased after 24 hours of TGFß1 treatment, implying that TRPM4 in vivo may be upregulated by fibrogenesis promotor TGFß1. The upregulated TRPM4 in HF fibroblasts suggests that TRPM4 may play a role in cardiac fibrogenesis under various pathological conditions.


Subject(s)
Fibroblasts/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , TRPM Cation Channels/metabolism , Female , Humans , Male , Middle Aged , Myocytes, Cardiac/metabolism , Up-Regulation
15.
Circ Res ; 128(4): 455-470, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33334123

ABSTRACT

RATIONALE: We recently discovered pivotal contributions of stress kinase JNK2 (c-Jun N-terminal kinase isoform 2) in increased risk of atrial fibrillation through enhanced diastolic sarcoplasmic reticulum (SR) calcium (Ca2+) leak via RyR2 (ryanodine receptor isoform 2). However, the role of JNK2 in the function of the SERCA2 (SR Ca2+-ATPase), essential in maintaining SR Ca2+ content cycling during each heartbeat, is completely unknown. OBJECTIVE: To test the hypothesis that JNK2 increases SERCA2 activity SR Ca2+ content and exacerbates an arrhythmic SR Ca2+ content leak-load relationship. METHODS AND RESULTS: We used confocal Ca2+ imaging in myocytes and HEK-RyR2 (ryanodine receptor isoform 2-expressing human embryonic kidney 293 cells) cells, biochemistry, dual Ca2+/voltage optical mapping in intact hearts from alcohol-exposed or aged mice (where JNK2 is activated). We found that JNK2, but not JNK1 (c-Jun N-terminal kinase isoform 1), increased SERCA2 uptake and consequently elevated SR Ca2+ content load. JNK2 also associates with and phosphorylates SERCA2 proteins. JNK2 causally enhances SERCA2-ATPase activity via increased maximal rate, without altering Ca2+ affinity. Unlike the CaMKII (Ca2+/calmodulin-dependent kinase II)-dependent JNK2 action in SR Ca2+ leak, JNK2-driven SERCA2 function was CaMKII independent (not prevented by CaMKII inhibition). With CaMKII blocked, the JNK2-driven SR Ca2+ loading alone did not significantly raise leak. However, with JNK2-CaMKII-driven SR Ca2+ leak present, the JNK2-enhanced SR Ca2+ uptake limited leak-induced reduction in SR Ca2+, normalizing Ca2+ transient amplitude, but at a higher arrhythmogenic SR Ca2+ leak. JNK2-specific inhibition completely normalized SR Ca2+ handling, attenuated arrhythmic Ca2+ activities, and alleviated atrial fibrillation susceptibility in aged and alcohol-exposed myocytes and intact hearts. CONCLUSIONS: We have identified a novel JNK2-induced activation of SERCA2. The dual action of JNK2 in CaMKII-dependent arrhythmic SR Ca2+ leak and a CaMKII-independent uptake exacerbates atrial arrhythmogenicity, while helping to maintain normal levels of Ca2+ transients and heart function. JNK2 modulation may be a novel therapeutic target for atrial fibrillation prevention and treatment.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcium Signaling , Mitogen-Activated Protein Kinase 9/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Action Potentials , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology , Rabbits , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
16.
Pharmacol Res ; 164: 105375, 2021 02.
Article in English | MEDLINE | ID: mdl-33316384

ABSTRACT

Excessive binge alcohol intake is a common drinking pattern in humans, especially during holidays. Cessation of the binge drinking often leads to aberrant withdrawal behaviors, as well as serious heart rhythm abnormalities (clinically diagnosed as Holiday Heart Syndrome (HHS)). In our HHS mouse model with well-characterized binge alcohol withdrawal (BAW)-induced heart phenotypes, BAW leads to anxiety-like behaviors and cognitive impairment. We have previously reported that stress-activated c-Jun NH(2)-terminal kinase (JNK) plays a causal role in BAW-induced heart phenotypes. In the HHS brain, we found that activation of JNK2 (but not JNK1 and JNK3) in the prefrontal cortex (PFC), but not hippocampus and amygdala, led to anxiety-like behaviors and impaired cognition. DNA methylation mediated by a crucial DNA methylation enzyme, DNA methyltransferase1 (DNMT1), is known to be critical in alcohol-associated behavioral deficits. In HHS mice, JNK2 in the PFC (but not hippocampus and amygdala) causally enhanced total genomic DNA methylation via increased DNMT1 expression, which was regulated by enhanced binding of JNK downstream transcriptional factor c-JUN to the DNMT1 promoter. JNK2-specific inhibition either by an inhibitor JNK2I or JNK2 knockout completely offset c-JUN-regulated DNMT1 upregulation and restored the level of DNA methylation in HHS PFC to the baseline levels seen in sham controls. Strikingly, either JNK2-specific inhibition or genetic JNK2 depletion or DNMT1 inhibition (by an inhibitor 5-Azacytidine) completely abolished BAW-evoked behavioral deficits. In conclusion, our studies revealed a novel mechanism by which JNK2 drives BAW-evoked behavioral deficits through a DNMT1-regulated DNA hypermethylation. JNK2 could be a novel therapeutic target for alcohol withdrawal treatment and/or prevention.


Subject(s)
Behavior, Animal , Binge Drinking , DNA Methylation , Mitogen-Activated Protein Kinase 9 , Substance Withdrawal Syndrome , Amygdala/metabolism , Animals , Anxiety/enzymology , Anxiety/genetics , Binge Drinking/enzymology , Binge Drinking/genetics , Cognition , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Mitogen-Activated Protein Kinase 9/genetics , Prefrontal Cortex/metabolism , Substance Withdrawal Syndrome/enzymology , Substance Withdrawal Syndrome/genetics
17.
Circ Arrhythm Electrophysiol ; 13(8): e008296, 2020 08.
Article in English | MEDLINE | ID: mdl-32654503

ABSTRACT

BACKGROUND: Epidemiological studies have established obesity as an independent risk factor for atrial fibrillation (AF), but the underlying pathophysiological mechanisms remain unclear. Reduced cardiac sodium channel expression is a known causal mechanism in AF. We hypothesized that obesity decreases Nav1.5 expression via enhanced oxidative stress, thus reducing INa, and enhancing susceptibility to AF. METHODS: To elucidate the underlying electrophysiological mechanisms a diet-induced obese mouse model was used. Weight, blood pressure, glucose, F2-isoprostanes, NOX2 (NADPH oxidase 2), and PKC (protein kinase C) were measured in obese mice and compared with lean controls. Invasive electrophysiological, immunohistochemistry, Western blotting, and patch clamping of membrane potentials was performed to evaluate the molecular and electrophysiological phenotype of atrial myocytes. RESULTS: Pacing-induced AF in 100% of diet-induced obese mice versus 25% in controls (P<0.01) with increased AF burden. Cardiac sodium channel expression, INa and atrial action potential duration were reduced and potassium channel expression (Kv1.5) and current (IKur) and F2-isoprostanes, NOX2, and PKC-α/δ expression and atrial fibrosis were significantly increased in diet-induced obese mice as compared with controls. A mitochondrial antioxidant reduced AF burden, restored INa, ICa,L, IKur, action potential duration, and reversed atrial fibrosis in diet-induced obese mice as compared with controls. CONCLUSIONS: Inducible AF in obese mice is mediated, in part, by a combined effect of sodium, potassium, and calcium channel remodeling and atrial fibrosis. Mitochondrial antioxidant therapy abrogated the ion channel and structural remodeling and reversed the obesity-induced AF burden. Our findings have important implications for the management of obesity-mediated AF in patients. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Atrial Fibrillation/etiology , Atrial Remodeling , Heart Rate , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Obesity/complications , Oxidative Stress , Action Potentials , Animals , Antioxidants/pharmacology , Atrial Fibrillation/drug therapy , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Atrial Remodeling/drug effects , Calcium Channels, L-Type/metabolism , Diet, High-Fat , Disease Models, Animal , Fibrosis , Heart Rate/drug effects , Kv1.5 Potassium Channel/metabolism , Male , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/drug effects , Obesity/metabolism , Obesity/physiopathology , Oxidative Stress/drug effects , Signal Transduction
18.
Circ Res ; 127(2): e28-e43, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32347164

ABSTRACT

RATIONALE: ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE: We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS: Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS: ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.


Subject(s)
Atrioventricular Node/metabolism , Heart Rate , Zonula Occludens-1 Protein/metabolism , Animals , Atrioventricular Node/physiology , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Potassium Channels, Voltage-Gated/metabolism , Zonula Occludens-1 Protein/genetics , Gap Junction alpha-5 Protein
20.
Angew Chem Int Ed Engl ; 58(44): 15675-15679, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31479175

ABSTRACT

Due to their ubiquity in nature and frequent use in organic electronic materials, benzothiophenes are highly sought after. Here we set out an unprecedented procedure for the formation of benzothiophenes by the twofold vicinal C-H functionalization of arenes that does not require metal catalysis. This one-pot annulation proceeds through an interrupted Pummerer reaction/[3,3]-sigmatropic rearrangement/cyclization sequence to deliver various benzothiophene products. The procedure is particularly effective for the rapid synthesis of benzothiophenes from non-prefunctionalized polyaromatic hydrocarbons (PAHs).

SELECTION OF CITATIONS
SEARCH DETAIL
...