Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2407476, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004873

ABSTRACT

The demand for accurate perception of the physical world leads to a dramatic increase in sensory nodes. However, the transmission of massive and unstructured sensory data from sensors to computing units poses great challenges in terms of power-efficiency, transmission bandwidth, data storage, time latency, and security. To efficiently process massive sensory data, it is crucial to achieve data compression and structuring at the sensory terminals. In-sensor computing integrates perception, memory, and processing functions within sensors, enabling sensory terminals to perform data compression and data structuring. Here, vision sensors are adopted as an example and discuss the functions of electronic, optical, and optoelectronic hardware for visual processing. Particularly, hardware implementations of optoelectronic devices for in-sensor visual processing that can compress and structure multidimensional vision information are examined. The underlying resistive switching mechanisms of volatile/nonvolatile optoelectronic devices and their processing operations are explored. Finally, a perspective on the future development of optoelectronic devices for in-sensor computing is provided.

2.
Nano Lett ; 24(23): 7091-7099, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38804877

ABSTRACT

Multimodal perception can capture more precise and comprehensive information compared with unimodal approaches. However, current sensory systems typically merge multimodal signals at computing terminals following parallel processing and transmission, which results in the potential loss of spatial association information and requires time stamps to maintain temporal coherence for time-series data. Here we demonstrate bioinspired in-sensor multimodal fusion, which effectively enhances comprehensive perception and reduces the level of data transfer between sensory terminal and computation units. By adopting floating gate phototransistors with reconfigurable photoresponse plasticity, we realize the agile spatial and spatiotemporal fusion under nonvolatile and volatile photoresponse modes. To realize an optimal spatial estimation, we integrate spatial information from visual-tactile signals. For dynamic events, we capture and fuse in real time spatiotemporal information from visual-audio signals, realizing a dance-music synchronization recognition task without a time-stamping process. This in-sensor multimodal fusion approach provides the potential to simplify the multimodal integration system, extending the in-sensor computing paradigm.

3.
Plants (Basel) ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765504

ABSTRACT

Autophagy is a highly conserved self-degradation process that involves the degradation and recycling of cellular components and organelles. Although the involvement of autophagy in metabolic changes during fruit ripening has been preliminarily demonstrated, the variations in autophagic flux and specific functional roles in tomato fruit ripening remain to be elucidated. In this study, we analyzed the variations in autophagic flux during tomato fruit ripening. The results revealed differential expression of the SlATG8 family members during tomato fruit ripening. Transmission electron microscopy observations and dansylcadaverine (MDC) staining confirmed the presence of autophagy at the cellular level in tomato fruits. Furthermore, the overexpression of SlATG8f induced the formation of autophagosomes, increased autophagic flux within tomato fruits, and effectively enhanced the expression of ATG8 proteins during the color-transition phase of fruit ripening, thus promoting tomato fruit maturation. SlATG8f overexpression also led to the accumulation of vitamin C (VC) and soluble solids while reducing acidity in the fruit. Collectively, our findings highlight the pivotal role of SlATG8f in enhancing tomato fruit ripening, providing insights into the mechanistic involvement of autophagy in this process. This research contributes to a better understanding of the key factors that regulate tomato fruit quality and offers a theoretical basis for tomato variety improvement.

4.
Nat Nanotechnol ; 18(8): 882-888, 2023 08.
Article in English | MEDLINE | ID: mdl-37081081

ABSTRACT

Motion processing has proven to be a computational challenge and demands considerable computational resources. Contrast this with the fact that flying insects can agilely perceive real-world motion with their tiny vision system. Here we show that phototransistor arrays can directly perceive different types of motion at sensory terminals, emulating the non-spiking graded neurons of insect vision systems. The charge dynamics of the shallow trapping centres in MoS2 phototransistors mimic the characteristics of graded neurons, showing an information transmission rate of 1,200 bit s-1 and effectively encoding temporal light information. We used a 20 × 20 photosensor array to detect trajectories in the visual field, allowing the efficient perception of the direction and vision saliency of moving objects and achieving 99.2% recognition accuracy with a four-layer neural network. By modulating the charge dynamics of the shallow trapping centres of MoS2, the sensor array can recognize motion with a temporal resolution ranging from 101 to 106 ms.


Subject(s)
Motion Perception , Neurons , Neurons/chemistry , Electrons , Neural Networks, Computer , Animals , Vision, Ocular , Drosophila melanogaster
5.
J Phys Condens Matter ; 35(24)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36940480

ABSTRACT

We report the synthesis of transition-metal-doped ferromagnetic elemental single-crystal semiconductors with quantum oscillations using the physical vapor transport method. The 7.7 atom% Cr-doped Te crystals (Cr:Te) show ferromagnetism, butterfly-like negative magnetoresistance in the low temperature (<3.8 K) and low field (<0.15 T) region, and high Hall mobility, e.g. 1320 cm2V-1s-1at 30 K and 350 cm2V-1s-1at 300 K, implying that Cr:Te crystals are ferromagnetic elemental semiconductors. WhenB// [001] // I, the maximum negative MR is ∼-27% atT= 20 K andB= 8 T. In the low temperature semiconducting region, Cr:Te crystals show strong discrete scale invariance dominated logarithmic quantum oscillations when the direction of the magnetic fieldBis parallel to the [100] crystallographic direction (B// [100]) and show Landau quantization dominated Shubnikov-de Haas oscillations forB// [210] direction, which suggests the broken rotation symmetry of the Fermi pockets in the Cr:Te crystals. The findings of coexistence of multiple quantum oscillations and ferromagnetism in such an elemental quantum material may inspire more study of narrow bandgap semiconductors with ferromagnetism and quantum phenomena.

6.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 173-182, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36840466

ABSTRACT

On a global scale, drought, salinity, extreme temperature, and other abiotic stressors severely limit the quality and yield of crops. Therefore, it is crucial to clarify the adaptation strategies of plants to harsh environments. Chloroplasts are important environmental sensors in plant cells. For plants to thrive in different habitats, chloroplast homeostasis must be strictly regulated, which is necessary to maintain efficient plant photosynthesis and other metabolic reactions under stressful environments. To maintain normal chloroplast physiology, two important biological processes are needed: the import and degradation of chloroplast proteins. The orderly import of chloroplast proteins and the timely degradation of damaged chloroplast components play a key role in adapting plants to their environment. In this review, we briefly describe the mechanism of chloroplast TOC-TIC protein transport. The importance and recent progress of chloroplast protein turnover, retrograde signaling, and chloroplast protein degradation under stress are summarized. Furthermore, the potential of targeted regulation of chloroplast homeostasis is emphasized to improve plant adaptation to environmental stresses.


Subject(s)
Chloroplasts , Photosynthesis , Chloroplasts/metabolism , Plants , Chloroplast Proteins/metabolism , Stress, Physiological , Homeostasis
7.
Nat Commun ; 13(1): 7758, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522374

ABSTRACT

Valley pseudospin is an electronic degree of freedom that promises highly efficient information processing applications. However, valley-polarized excitons usually have short pico-second lifetimes, which limits the room-temperature applicability of valleytronic devices. Here, we demonstrate room-temperature valley transistors that operate by generating free carrier valley polarization with a long lifetime. This is achieved by electrostatic manipulation of the non-trivial band topology of the Weyl semiconductor tellurium (Te). We observe valley-polarized diffusion lengths of more than 7 µm and fabricate valley transistors with an ON/OFF ratio of 105 at room temperature. Moreover, we demonstrate an ion insertion/extraction device structure that enables 32 non-volatile memory states with high linearity and symmetry in the Te valley transistor. With ultralow power consumption (~fW valley contribution), we enable the inferring process of artificial neural networks, exhibiting potential for applications in low-power neuromorphic computing.


Subject(s)
Cognition , Environment , Temperature , Diffusion , Electronics , Tellurium
8.
Plants (Basel) ; 11(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36365376

ABSTRACT

The post-translational import of nuclear-encoded chloroplast preproteins is critical for chloroplast biogenesis, and the Toc159 family of proteins is the receptor for this process. Our previous work identified and analyzed the Toc GTPase in tomato; however, the tomato-specific transport substrate for Toc159 is still unknown, which limits the study of the function of the TOC receptor in tomato. In this study, we expand the number of preprotein substrates of slToc159 receptor family members using slToc159-1 and slToc159-2 as bait via a split-ubiquitin yeast two-hybrid membrane system. Forty-one specific substrates were identified in tomato for the first time. Using slToc159-1GM and slToc159-2GM as bait, we compared the affinity of the two bait proteins, with and without the A domain, to the precursor protein, which suggested that the A domain endowed the proproteins with subclass specificity. The presence of the A domain enhanced the interaction intensity of slToc159-1 with the photosynthetic preprotein but decreased the interaction intensity of slToc159-2 with the photosynthetic preprotein. Similarly, the presence of the A domain also altered the affinity of slToc159 to non-photosynthetic preproteins. Bimolecular fluorescence complementation (BiFC) analysis showed that A domain had the ability to recognize the preprotein, and the interaction occurred in the chloroplast. Further, the localization of the A domain in Arabidopsis protoplasts showed that the A domain did not contain chloroplast membrane targeting signals. Our data demonstrate the importance of a highly non-conserved A domain, which endows the slToc159 receptor with specificity for different protein types. However, the domain containing the information on targeting the chloroplast needs further study.

9.
Nat Commun ; 13(1): 2101, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35440125

ABSTRACT

The development of continuous conducting polymer fibres is essential for applications ranging from advanced fibrous devices to frontier fabric electronics. The use of continuous conducting polymer fibres requires a small diameter to maximize their electroactive surface, microstructural orientation, and mechanical strength. However, regularly used wet spinning techniques have rarely achieved this goal due primarily to the insufficient slenderization of rapidly solidified conducting polymer molecules in poor solvents. Here we report a good solvent exchange strategy to wet spin the ultrafine polyaniline fibres. The slow diffusion between good solvents distinctly decreases the viscosity of protofibers, which undergo an impressive drawing ratio. The continuously collected polyaniline fibres have a previously unattained diameter below 5 µm, high energy and charge storage capacities, and favorable mechanical performance. We demonstrated an ultrathin all-solid organic electrochemical transistor based on ultrafine polyaniline fibres, which operated as a tactile sensor detecting pressure and friction forces at different levels.

10.
ACS Appl Mater Interfaces ; 13(49): 58949-58955, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34854300

ABSTRACT

Stoichiometric Cr2Se3 single crystals are particular layer-structured antiferromagnets, which possess a noncollinear spin configuration, weak ferromagnetic moments, moderate magnetoresistance (MR ∼14.3%), and poor metallic conductivity below the antiferromagnetic phase transition. Here, we report an interesting >16 000% colossal magnetoresistance (CMR) effect in Ti (1.5 atomic percent) lightly doped Cr2Se3 single crystals. Such a CMR is approximately 1143 times larger than that of the stoichiometric Cr2Se3 crystals and is rarely observed in layered antiferromagnets and is attributed to the frustrated spin configuration. Moreover, the Ti doping not only dramatically changes the electronic conductivity of the Cr2Se3 crystal from a bad metal to a semiconductor with a gap of ∼15 meV but also induces a change in the magnetic anisotropy of the Cr2Se3 crystal from strong out-of-plane to weak in-plane. Further, magnetotransport measurements reveal that the low-field MR scales with the square of the reduced magnetization, which is a signature of CMR materials. The layered Ti:Cr2Se3 with the CMR effect could be used as two-dimensional (2D) heterostructure building blocks to provide colossal negative MR in spintronic devices.

11.
J Phys Condens Matter ; 32(47): 475801, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870812

ABSTRACT

We report on the growth of high-quality stoichiometric layered Cr2Se3 single crystals with metallic and noncollinear antiferromagnetic ground state using the chemical vapor transport (CVT) method. The crystals show weak ferromagnetism in the in-plane and out-of-plane directions below the Neél temperature (T N), however, the field-cooled out-of-plane magnetization at 500 Oe and 10 K (∼0.24 µ B/f.u.) is approximately 15 times larger than that of the in-plane one, indicating strong c-axis easy uniaxial magnetic anisotropy, which is further supported by the in-plane and out-of-plane isothermal anisotropic magnetic hysteresis loops and the angular dependent magnetoresistance (MR). The latter also reveals a decrease of the coercive field of the crystal upon the tilting of the weak ferromagnetic easy axis away from the direction of the magnetic field. Further, the out-of-plane isothermal MR are negative below T N and show butterfly shapes for T < 10 K and couple with the magnetic hysteresis M(H) loop. These results may help researchers better understand the interplay between the weak ferromagnetism and the magnetotransport properties of 2D itinerant noncollinear antiferromagnetic systems.

12.
Ann Transl Med ; 8(12): 759, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32647684

ABSTRACT

BACKGROUND: Barn-integrated operating rooms have been used in an effort to save space and improve operating room efficiency during orthopedic surgeries. This study aimed to investigate the feasibility of performing several thoracic surgeries in a barn-integrated operating room simultaneously. METHODS: Both numerical simulation and field measurement approaches were applied to evaluate the performance of the ventilation system for the barn-integrated operating room. Computational fluid dynamics (CFD) method was applied to simulate airflow velocity field and particle concentration field. On-site test of airflow velocities were measured with a thermal anemometer. Bacteria-carrying particle (BCP) deposition and distribution was estimated using passive air sampling (PAS) and active air sampling (AAS) methods during mock surgeries. RESULTS: The airflow distribution and concentration contours showed the barn-integrated operating room to be highly effective in controlling the concentration of airborne bacteria in the operating fields. The airflow and bacteria count met the current standard of GB50333-2013 Specifications, and there was no evidence of air mixing between cabins. CONCLUSIONS: A barn-integrated operating room with several ultraclean operating tables in a single room would be a viable proposition for general thoracic surgeries in the future. As well as achieving a satisfactory level of contamination control, such an approach would reduce operating costs.

13.
Nanoscale ; 11(36): 16928-16934, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31490526

ABSTRACT

Perovskite oxides with luminescent ions hold great promise in optoelectronic devices because of their outstanding thermal stabilities and electro-optic performance. As one typical perovskite upconversion (UC) host material, lead-free potassium sodium niobate ((K, Na)NbO3/(KxNa1-x)NbO3 or KNN) has attracted much attention in recent years. In the present work, a novel routine was developed to tune the upconversion photoluminescence (UC PL) performance by controlling the oxygen vacancy concentration in the KNN matrix, based on the 0.1% Er3+-doped KNN (Er-KNN) single crystals grown for the first time. UC PL properties, conductivity and defect chemistry of the single crystals were systematically investigated. The UC PL intensity of the as-grown Er-KNN material could be enhanced by 20 times after oxygen atmosphere annealing at 800 °C and fully quenched after vacuum annealing. What's more, by annealing under an oxygen atmosphere and vacuum, the conductivity of the Er-KNN sample was successfully tuned for more than 8 orders of magnitude. The super-wide range tunability of UC PL performance and conductivity could be explained by oxygen vacancies which gave rise to Nb5+-Nb4+ valence alternation. Because of the modulated photoluminescence properties and conductivity, our grown Er-KNN single crystals have great potential for use in multifunctional devices.

14.
ACS Appl Mater Interfaces ; 11(35): 32449-32459, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31405273

ABSTRACT

A series of Cr-doped In2-xCrxO3 (ICO) semiconductor thin films were epitaxially grown on (111)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT) single-crystal substrates by the pulsed laser deposition. Upon the application of an electric field to the PMN-0.29PT substrate along the thickness direction, we realized in situ, reversible, and nonvolatile control of the electronic properties and Fermi level of the films, which are manifested by abundant physical phenomena such as the n-type to p-type transformation, metal-semiconductor transition, metal-insulator transition, crossover of the magnetoresistance (MR) from negative to positive, and a large nonvolatile on-and-off ratio of 5.5 × 104% at room temperature. We also strictly disclose that both the sign and the magnitude of MR are determined by the electron carrier density of ICO films, which could modify the s-d exchange interaction and weak localization effect. Our results demonstrate that the ferroelectric gating approach using PMN-PT can be utilized to gain deeper insight into the carrier-density-related electronic properties of In2O3-based semiconductors and provide a simple and energy efficient way to construct multifunctional devices which can utilize the unique properties of composite materials.

15.
ACS Appl Mater Interfaces ; 11(9): 9548-9556, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30724082

ABSTRACT

Single-phase (00 l)-oriented Bi2Te3 topological insulator thin films have been deposited on (111)-oriented ferroelectric 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) single-crystal substrates. Taking advantage of the nonvolatile polarization charges induced by the polarization direction switching of PMN-PT substrates at room temperature, the carrier density, Fermi level, magnetoconductance, conductance channel, phase coherence length, and quantum corrections to the conductance can be in situ modulated in a reversible and nonvolatile manner. Specifically, upon the polarization switching from the positively poled Pr+ state (i.e., polarization direction points to the film) to the negatively poled Pr- (i.e., polarization direction points to the bottom electrode) state, both the electron carrier density and the Fermi wave vector decrease significantly, reflecting a shift of the Fermi level toward the Dirac point. The polarization switching from Pr+ to Pr- also results in significant increase of the conductance channel α from -0.15 to -0.3 and a decrease of the phase coherence length from 200 to 80 nm at T = 2 K as well as a reduction of the electron-electron interaction. All these results demonstrate that electric-voltage control of physical properties using PMN-PT as both substrates and gating materials provides a simple and a straightforward approach to realize reversible and nonvolatile tuning of electronic properties of topological thin films and may be further extended to study carrier density-related quantum transport properties of other quantum matter.

16.
ACS Appl Mater Interfaces ; 10(38): 32809-32817, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30156403

ABSTRACT

We report the fabrication of 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT)-based ferroelectric field effect transistors (FeFETs) by the epitaxial growth of cobalt-doped tin dioxide (SnO2) semiconductor thin films on PMN-0.29PT single crystals. Using such FeFETs we realized in situ, reversible, and nonvolatile manipulation of the electron carrier density and achieved a large nonvolatile modulation of the resistance (∼330%) of the SnO2:Co films through the polarization switching of PMN-0.29PT at 300 K. Particularly, combining the ferroelectric gating with piezoresponse force microscopy, X-ray diffraction, Hall effect, and magnetoresistance (MR), we rigorously disclose that both sign and magnitude of the MR are intrinsically determined by the electron carrier density, which could modify the s-d exchange interaction of the SnO2:Co films. Furthermore, we realized multilevel resistance states of the SnO2:Co films by combining the ferroelectric gating with ultraviolet light illumination, demonstrating that the FeFETs have potential applications in multistate resistive memories and electro-optical devices.

17.
PLoS One ; 9(4): e95088, 2014.
Article in English | MEDLINE | ID: mdl-24751891

ABSTRACT

The translocon at the outer envelope membrane of chloroplasts (Toc) mediates the recognition and initial import into the organelle of thousands of nucleus-encoded proteins. These proteins are translated in the cytosol as precursor proteins with cleavable amino-terminal targeting sequences called transit peptides. The majority of the known Toc components that mediate chloroplast protein import were originally identified in pea, and more recently have been studied most extensively in Arabidopsis. With the completion of the tomato genome sequencing project, it is now possible to identify putative homologues of the chloroplast import components in tomato. In the work reported here, the Toc GTPase cDNAs from tomato were identified, cloned and analyzed. The analysis revealed that there are four Toc159 homologues (slToc159-1, -2, -3 and -4) and two Toc34 homologues (slToc34-1 and -2) in tomato, and it was shown that tomato Toc159 and Toc34 homologues share high sequence similarity with the comparable import apparatus components from Arabidopsis and pea. Thus, tomato is a valid model for further study of this system. The expression level of Toc complex components was also investigated in different tissues during tomato development. The two tomato Toc34 homologues are expressed at higher levels in non-photosynthetic tissues, whereas, the expression of two tomato Toc159 homologues, slToc159-1 and slToc159-4, were higher in photosynthetic tissues, and the expression patterns of slToc159-2 was not significantly different in photosynthetic and non-photosynthetic tissues, and slToc159-3 expression was limited to a few select tissues.


Subject(s)
Chloroplasts/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Amino Acid Sequence , Chromosomes, Plant/genetics , Cloning, Molecular , Conserved Sequence , DNA, Complementary/genetics , Exons/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Profiling , Genes, Plant , Introns/genetics , Molecular Sequence Data , Organ Specificity/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Structure, Tertiary , Protein Transport , Sequence Analysis, Protein , Structural Homology, Protein
18.
Int J Mol Sci ; 14(11): 21983-96, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24201128

ABSTRACT

Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs) play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS) method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA)-induced and hydrogen peroxide (H2O2)-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants' drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.


Subject(s)
Abscisic Acid/metabolism , Droughts , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinases/genetics , Plant Proteins/genetics , Solanum lycopersicum/growth & development , Abscisic Acid/pharmacology , Gene Silencing , Hydrogen Peroxide/metabolism , Solanum lycopersicum/genetics , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Signal Transduction/drug effects
19.
Zhonghua Yi Shi Za Zhi ; 41(6): 363-5, 2011 Nov.
Article in Chinese | MEDLINE | ID: mdl-22335849

ABSTRACT

LI Shizhen mentioned Fanguan Neishi in Qijing Bamaikao, but without interpretation. There are various interpretations of Fanguan Neishi, such as perception induced by Qigong and methodology of TCM, which are not evidence-based. According to the meaning of perception in traditional culture, neuroscience and psychological research, the physiological function of the brain is introversive thinking on which perception is based. The essence of Fanguan Neishi and introversive thinking are the same and Fanguan Neishi is not an extrasensory perception.

20.
Zhongguo Zhen Jiu ; 26(5): 374-7, 2006 May.
Article in Chinese | MEDLINE | ID: mdl-16739858

ABSTRACT

OBJECTIVE: To probe into essence and concept of Meridian, and discuss with the author of the paper "A new way for study of Meridian essence". METHODS: Review courses of studies on Meridian and collaterals in the half century, and look up and analyze the literature. CONCLUSION: Theories of Meridian and Collaterals originate from Yin and Shang Dynasties, and are perfected in two Han Dynasties. Explaining the linking interiorly with zang- and fu-organs in the theories of Meridian and collaterals by means of modern anatomical physiology is inheriting the regulative theory of the urinary Bladder Channel of the Foot-Taiyang--the vegetative nerve.


Subject(s)
Medicine, Chinese Traditional , Meridians , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...