Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 1): 131813, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685537

ABSTRACT

Microbial exopolysaccharides (EPS) have various physiological functions such as antioxidant, anti-tumor, cholesterol lowering, and immune regulation. However, improving traditional fermentation conditions to increase the production of EPS from Lactiplantibacillus plantarum (L. plantarum) is limited. In this study, we aimed to better improve EPS production and physiological functions of L. plantarum YM-4-3 strain by overexpressing and knocking out the priming glycosyltransferase genes cps 2E and cps 4E for the first time. As a result, the EPS production of the overexpression strain was 30.15 %, 26.84 % and 36.29 % higher than WT, respectively. The EPS production of the knockout strain was significantly lower than that of the WT. At the same time, transcriptome data showed that the gene expression levels of each experimental strain had changed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways found that the glycolysis/gluconeogenesis pathway had the highest gene enrichment in the metabolic pathway. The monosaccharide components of the EPS of each experimental strain were different from those of the WT and the EPS of the experimental strain showed stronger activity against oxidation. In conclusion, this study contributes to the efficient production and application of L. plantarum EPS and helps to understand the mechanism of EPS regulation in L. plantarum.


Subject(s)
Glycosyltransferases , Lactobacillus plantarum , Polysaccharides, Bacterial , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Polysaccharides, Bacterial/biosynthesis , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation
2.
Plant Physiol ; 167(4): 1659-70, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25713337

ABSTRACT

Abscisic acid (ABA) plays a key role in plant growth and development. The effect of ABA in plants mainly depends on its concentration, which is determined by a balance between biosynthesis and catabolism of ABA. In this study, we characterize a unique UDP-glucosyltransferase (UGT), UGT71C5, which plays an important role in ABA homeostasis by glucosylating ABA to abscisic acid -: glucose ester (GE) in Arabidopsis (Arabidopsis thaliana). Biochemical analyses show that UGT71C5 glucosylates ABA in vitro and in vivo. Mutation of UGT71C5 and down-expression of UGT71C5 in Arabidopsis cause delay in seed germination and enhanced drought tolerance. In contrast, overexpression of UGT71C5 accelerates seed germination and reduces drought tolerance. Determination of the content of ABA and ABA-GE in Arabidopsis revealed that mutation in UGT71C5 and down-expression of UGT71C5 resulted in increased level of ABA and reduced level of ABA-GE, whereas overexpression of UGT71C5 resulted in reduced level of ABA and increased level of ABA-GE. Furthermore, altered levels of ABA in plants lead to changes in transcript abundance of ABA-responsive genes, correlating with the concentration of ABA regulated by UGT71C5 in Arabidopsis. Our work shows that UGT71C5 plays a major role in ABA glucosylation for ABA homeostasis.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Gene Expression Regulation, Plant , Glucosyltransferases/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Droughts , Germination , Glucosyltransferases/genetics , Glycosylation , Homeostasis , Mutation , Phenotype , Plants, Genetically Modified , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Seeds/enzymology , Seeds/genetics , Seeds/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...