Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20190566, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33222649

ABSTRACT

Due to ionosphere absorption and the interference of natural and artificial radio emissions, astronomical observation from the ground becomes very difficult at the wavelengths of decametre or longer, which we shall refer to as the ultralong wavelengths. This unexplored part of the electromagnetic spectrum has the potential for great discoveries, notably in the study of cosmic dark ages and dawn, but also in heliophysics and space weather, planets and exoplanets, cosmic ray and neutrinos, pulsar and interstellar medium (ISM), extragalactic radio sources, and so on. The difficulty of the ionosphere can be overcome by space observation, and the Moon can shield the radio frequency interferences (RFIs) from the Earth. A lunar orbit array can be a practical first step to opening up the ultralong wave band. Compared with a lunar surface observatory on the far side, the lunar orbit array is simpler and more economical, as it does not need to make the risky and expensive landing, can be easily powered with solar energy, and the data can be transmitted back to the Earth when it is on the near-side part of the orbit. Here, I describe the discovering sky at the longest wavelength (DSL) project, which will consist of a mother satellite and 6-9 daughter satellites, flying on the same circular orbit around the Moon, and forming a linear interferometer array. The data are collected by the mother satellite which computes the interferometric cross-correlations (visibilities) and transmits the data back to the Earth. The whole array can be deployed on the lunar orbit with a single rocket launch. The project is under intensive study in China. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.

2.
Polymers (Basel) ; 12(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947729

ABSTRACT

Novel approach has been constructed for preparing the amphiphilic star copolymer pH/reduction stimuli-responsive cross-linked micelles (SCMs) as a smart drug delivery system for the well-controlled anti-tumor drug doxorubicin (DOX) release. The SCMs had a low CMC value of 5.3 mg/L. The blank and DOX-loaded SCMs both had a spherical shape with sizes around 100-180 nm. In addition, the good stability and well pH/reduction-sensitivity of the SCMs were determined by dynamic light scattering (DLS) as well. The SCMs owned a low release of DOX in bloodstream and normal tissues while it had a fast release in tumor higher glutathione (GSH) concentration and/or lower pH value conditions, which demonstrates their pH/reduction dual-responsiveness. Furthermore, we conducted the thermodynamic analysis to study the interactions between the DOX and polymer micelles in the DOX release process. The values of the thermodynamic parameters at pH 7.4 and at pH 5.0 conditions indicated that the DOX release was endothermic and controlled mainly by the forces of an electrostatic interaction. At pH 5.0 with 10 mM GSH condition, electrostatic interaction, chemical bond, and hydrophobic interactions contributed together on DOX release. With the low cytotoxicity of blank SCMs and well cytotoxicity of DOX-loaded SCMs, the results indicated that the SCMs could form a smart cancer microenvironment-responsive drug delivery system. The release kinetic and thermodynamic analysis offer a theoretical foundation for the interaction between drug molecules and polymer matrices, which helps provide a roadmap for the oriented design and control of anti-cancer drug release for cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...