Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(25): 42549-42561, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087626

ABSTRACT

Vortex beams that carry orbital angular moment (OAM) have recently attracted a great amount of research interest, and metasurfaces and planar microcavities have emerged as two prominent, but mostly separated, methods for Si chip-based vortex beam emission. In this work, we demonstrate in numerical simulation for the first time the hybridization of these two existing methods in a Si chip-based passive emitter (i.e., a light coupler). A unique feature of this device is its broken conjugate symmetry, which originates from introducing a metasurface phase gradient along a microring. The broken conjugate symmetry creates a new phenomenon that we refer to as asymmetric vortex beam emission. It allows two opposite input directions to generate two independent sets of OAM values, a capability that has never been reported before in Si chip-based passive emitters. In addition, we have also developed here a new analytical method to extract the OAM spectrum from a vector vortex beam. This analytical method will prove to be useful for vector vortex beam analysis, as mode purity analysis has rarely been reported in literature due to the complexity of the full-vector nature of such beams. This study provides new approaches for both the design and the analysis of integrated vortex beam emission, which could be utilized in many applications such as free-space optical communications and microfluidic particle manipulation.

2.
Opt Express ; 31(13): 21834-21844, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381271

ABSTRACT

Mode localization is widely used in coupled micro-electro-mechanical system (MEMS) resonators for ultra-sensitive sensing. Here, for the first time to the best of our knowledge, we experimentally demonstrate the phenomenon of optical mode localization in fiber-coupled ring resonators. For an optical system, resonant mode splitting happens when multiple resonators are coupled. Localized external perturbation applied to the system will cause uneven energy distributions of the split modes to the coupled rings, this phenomenon is called the optical mode localization. In this paper, two fiber-ring resonators are coupled. The perturbation is generated by two thermoelectric heaters. We define the normalized amplitude difference between the two split modes as: (T M1-T M2)/T M1×100%. It is found that this value can be varied from 2.5% to 22.5% when the temperature are changed by the value from 0K to 8.5K. This brings a ∼ 2.4%/K variation rate, which is three orders of magnitude greater than the variation rate of the frequency over temperature changes of the resonator due to thermal perturbation. The measured data reach good agreement with theoretical results, which demonstrates the feasibility of optical mode localization as a new sensing mechanism for ultra-sensitive fiber temperature sensing.

3.
Opt Express ; 31(9): 14128-14139, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157283

ABSTRACT

Inverse designs are widely used for creating ultra-compact photonic devices, but suffer from high computation power due to the optimization complexity. General Stoke's theorem proves that the overall change present at the outer boundary is equal to the integral of the change over the inner intervals, providing the possibility to divide one sophisticated device into several simple building blocks. Thus, we integrate this theorem with the inverse designs as a novel design methodology for optical devices. Compared with conventional inverse designs, the separated regional-optimisations can reduce the computational complexity significantly. The overall computational time is around five times shorter than optimizing the whole device region. To validate the proposed methodology, a monolithically integrated polarization rotator and splitter is designed and fabricated to demonstrate the performance experimentally. The device achieves polarization rotation (TE00 to TE00 and TM00 modes) and power splitting with the designed power ratio. The exhibited average insertion loss is <1 dB and the crosstalk is <-9.5 dB. These findings confirm the advantages of the new design methodology, as well as its feasibility for achieving multiple functions on one monolithic device.

4.
Opt Express ; 31(10): 15876-15887, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157678

ABSTRACT

Integration of metasurfaces and SOI (silicon-on-insulator) chips can leverage the advantages of both metamaterials and silicon photonics, enabling novel light shaping functionalities in planar, compact devices that are compatible with CMOS (complementary metal-oxide-semiconductor) production. To facilitate light extraction from a two-dimensional metasurface vertically into free space, the established approach is to use a wide waveguide. However, the multi-modal feature of such wide waveguides can render the device vulnerable to mode distortion. Here, we propose a different approach, where an array of narrow, single-mode waveguides is used instead of a wide, multi-mode waveguide. This approach tolerates nano-scatterers with a relatively high scattering efficiency, for example Si nanopillars that are in direct contact with the waveguides. Two example devices are designed and numerically studied as demonstrations: the first being a beam deflector that deflects light into the same direction regardless of the direction of input light, and the second being a light-focusing metalens. This work shows a straightforward approach of metasurface-SOI chip integration, which could be useful for emerging applications such as metalens arrays and neural probes that require off-chip light shaping from relatively small metasurfaces.

5.
Opt Express ; 31(10): 16162-16177, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157701

ABSTRACT

Stimulated Brillouin scattering (SBS), originating from the coupling between optical and acoustic waves, has been widely applied in many fields. Silicon is the most used and important material in micro-electromechanical systems (MEMS) and integrated photonic circuits. However, strong acoustic-optic interaction in silicon requires mechanical release of the silicon core waveguide to avoid acoustic energy leakage into the substrate. This will not only reduce the mechanical stability and thermal conduction, but also increase the difficulties for fabrication and large-area device integration. In this paper, we propose a silicon-aluminium nitride(AlN)-sapphire platform for realizing large SBS gain without suspending the waveguide. AlN is used as a buffer layer to reduce the phonon leakage. This platform can be fabricated via the wafer bonding between silicon and commercial AlN-sapphire wafer. We adopt a full-vectorial model to simulate the SBS gain. Both the material loss and the anchor loss of the silicon are considered. We also apply the genetic algorithm to optimize the waveguide structure. By limiting the maximum etching step number to two, we obtain a simple structure to achieve the SBS gain of 2462 W-1m-1 for forward SBS, which is 8 times larger than the recently reported result in unsuspended silicon waveguide. Our platform can enable Brillouin-related phenomena in centimetre-scale waveguides. Our findings could pave the way toward large-area unreleased opto-mechanics on silicon.

6.
Opt Express ; 30(15): 27092-27108, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236887

ABSTRACT

Stimulated Brillouin scattering (SBS) has been widely applied in narrow line-width laser, microwave filters, optical gyroscopes, and other fields. However, most research is limited within near-infrared to mid-infrared range. This is due to the limited transparent window in most materials, such as silicon and germanium. Aluminium nitride (AlN) is a novel III-V material with a wide transparent window from 200 nm and an appropriate refractive index to confine the light. In this paper, we first validate the full-vectorial formalism to calculate SBS gain based on the measured results from a silicon platform. Compared to previous research, our model achieves higher accuracy in terms of frequency, Q factor, as well as Brillouin gain coefficient without modifying the waveguide width. It also reveals the importance of matching rotation matrix and crystalline coordinate system. Then, we investigate the SBS in a partially suspended AlN waveguide at 450 nm based on the validated method. It shows a wide tunability in frequency from 16 GHz to 32 GHz for forward SBS and a range from 42 GHz to 49 GHz for backward SBS. We numerically obtain the value of Brillouin gain of 1311 W-1m-1 when Q factor is dominated by anchor loss for forward SBS of transverse electric mode. We also find out that in the case for forward SBS of transverse-magnetic mode, anchor loss could be greatly suppressed when the node point of the selected acoustic mode matches with the position of pillar anchor. Our findings, to the best of our knowledge, pave a new way to obtain Brillouin-related applications in integrated photonic circuit within the visible range.

7.
Opt Express ; 30(15): 27683-27693, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236934

ABSTRACT

Flat, gradient index, metasurface optics - in particular all-dielectric metalenses - have emerged and evolved over recent years as compact, lightweight alternative to their conventional bulk glass/crystal counterparts. Here we show that the focal properties of all-dielectric metalenses can be switched via coherent control, which is to say by changing the local electromagnetic field in the metalens plane rather than any physical or geometric property of the nanostructure or surrounding medium. The selective excitation of predominantly electric or magnetic resonant modes in the constituent cells of the metalens provides for switching, by design, of its phase profile enabling binary switching of focal length for a given lens type and, uniquely, switching between different (spherical and axicon) lens types.

8.
Opt Express ; 30(5): 7342-7355, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299499

ABSTRACT

Generalized vector vortex light beams possess spatially variant polarization states, and higher-order Poincaré spheres represent a powerful analytical tool for analyzing these intriguing and complicated optical fields. For the generation of these vortex beams, a range of different methods have been explored, with an increasing emphasis placed on compact, integrated devices. Here, we demonstrate via numerical simulation, for the first time, an on-chip light emitter that allows for the controllable generation of all points on a first-order Poincaré sphere (FOPS). The FOPS beam generator consists of a waveguide-coupled, nanostructured Si microring resonator that converts two guided, coherent light waves into freely propagating output light. By matching their whispering gallery modes with the nanostructures, the fundamental TE (transverse electric) and TM (transverse magnetic) input modes produce radial and azimuthal polarizations, respectively. These two linear polarizations can form a pair of eigenstates for the FOPS. Consequently, tuning the phase contrast and the intensity ratio of these two coherent inputs allows for the generation of an arbitrary point on the FOPS. This result indicates a new way for on-chip vector vortex beam generation, which may be applied for integrated optical tweezers and high-capacity optical communications.

9.
Opt Express ; 29(23): 38781-38795, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808923

ABSTRACT

This paper proposes a novel on-chip optical pulse train generator (OPTG) based on optomechanical oscillation (OMO). The OPTG consists of an optical cavity and mechanical resonator, in which OMO periodically modulates the optical cavity field and consequently generates optical pulse trains. The dimensionless method are introduced to simulate the OMO-based OPTG with reduced analysis complexity. We investigate the optomechanical coupling and the dynamic back-action processes, by which we found a dead zone that forbids the OMO, and derived the optimal laser detuning and the minimum threshold power. We analysed the OMO-based OPTG in terms of the pulse shape distortion, extinction ratio (ER) and duty-cycle (DC). Increasing input power, mechanical and optical Q-factors will increase ER, reduce DC and produce sharper and shorter optical pulses. We also discuss the design guidance of OMO-based OPTG and explore its application in distributed fibre optical sensor (DFOS).

10.
Opt Express ; 29(20): 32505-32522, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615319

ABSTRACT

Based on Mason's signal flow graph analysis, an analytical model of the optical mode localization based on coupled ring resonators is established. The correctness of the theoretical model is proved by simulation. High sensitivity and common-mode rejection can be achieved by evaluating the modal power ratio from resonant peaks as sensing output. Based on the four-port structure, two output spectrum with mode localization (asymmetric mode splitting) and symmetric mode splitting allows the high-sensitivity sensing and dual-channel calibration to be carried out simultaneously, which can reduce the sensing errors. Monte-Carlo analysis showed that fabrication imperfection changes less than 6% of the performance in 90% cases, thus the construction of practical sensors is possible with appropriate tuning. The optical mode localized sensing has advantages in sensitivity, accuracy, anti-aliasing compared with conventional micro-mechanical mode localized sensor. Various types of high-sensitive sensor can be constructed through coupling parametric perturbation with measurands in different physical domains.

11.
Sensors (Basel) ; 21(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34300374

ABSTRACT

A method based on equal frequency resampling is proposed to suppress laser nonlinear frequency sweeping for the ultimate spatial resolution in optical frequency domain reflectometry. Estimation inaccuracy of the sweeping frequency distribution caused by the finite sampling rate in the auxiliary interferometer can be efficiently compensated by the equal frequency resampling method. With the sweeping range of 130 nm, a 12.1 µm spatial resolution is experimentally obtained. In addition, the sampling limitation of the auxiliary interferometer-based correction is discussed. With a 200 m optical path delay in the auxiliary interferometer, a 21.3 µm spatial resolution is realised at the 191 m fibre end. By employing the proposed resampling and a drawing tower FBG array to enhance the Rayleigh backscattering, a distributed temperature sensing over a 105 m fibre with a sensing resolution of 1 cm is achieved. The measured temperature uncertainty is limited to ±0.15 °C.

12.
Opt Express ; 28(25): 38206-38222, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379638

ABSTRACT

In this paper, we analyse the performance of a silicon nano-opto-electro-mechanical system (NOEMS) applied as an optical modulator, based on a suspended slot waveguide driven by electrostatic forces. The analysis is carried out with the help of the finite element analysis (FEA) method involving the influences from Casimir force, optical force and electrostatic force. The performance of the modulator are analysed from aspects of actuating modes, actuating voltage, modulating frequency, effective index, phase change, and energy consumption using the FEA method. Simulation results show that a suspended slot modulator has the advantages of low actuation voltage, low power consumption, as well as large effective index and phase change compared with modulators based upon other approaches. The performance of such a modulator can fill the performance gap between the carrier-based approach and micro-opto-electro-mechanical system (MOEMS) approach for modulation.

13.
Opt Express ; 28(22): 33285-33297, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114996

ABSTRACT

Optical trapping has potential applications in biological manipulation, particle trapping, Raman spectroscopy, and quantum optomechanics. Among the various optical trapping schemes, on-chip dual-waveguide traps combine benefits of stable trapping and mass production. However, no systematic research has been conducted to optimise on-chip dual-waveguide traps so that the trapping capability is maximised. Here, a numerical simulation of an on-chip silicon on insulator (SOI) dual-waveguide optical trap based on Lumerical FDTD Solutions is carried out to optimise the on-chip dual-waveguide trap. It was found that the waveguide thickness is a crucial parameter when designing a dual-waveguide trap, and its optical trapping capability largely depends on the distance between the two waveguides. We show that the optimal waveguide thickness to achieve the maximum trapping capability generally increases with the gap distance, accompanied by a periodic feature due to the interference and the resonant effects within the gap. This optimal waveguide thickness and gap distance are analysed to have clear scaling effects over the input optical wavelength, which paves the way for the design and optimisation of dual-waveguide traps for various applications.

14.
Opt Express ; 26(4): 3870-3881, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475244

ABSTRACT

The sensitivity of a sensor to strain or the temperature variations due to distributed Brillouin scattering are partially related to the type of fibers used and the Brillouin scattering induced effective index. In this paper, a highly nonlinear fiber that can generate a higher Brillouin scattering signal is compared to a standard single mode fiber in a short-time-Fourier-transform Brillouin optical time domain reflectometer (STFT-BOTDR). The results show that much higher signal to noise ratios of the Brillouin scattering spectrum and smaller frequency uncertainties in the sensing measurement can be achieved in the highly nonlinear fiber for comparable launched powers. With a measurement speed of 4 Hz, the frequency uncertainty can be 0.43 MHz, corresponding to 10 µÎµ in strain or 0.43°C in temperature uncertainty for the highly nonlinear fiber. In contrast, for the standard single mode fiber case, the value would increase to about 1.02 MHz (25 µÎµ or 1.02°C), demonstrating the advantage of the highly nonlinear fiber for distributed strain/temperature sensing.

15.
Appl Opt ; 54(28): E196-202, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26479653

ABSTRACT

The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

16.
J Nanosci Nanotechnol ; 10(11): 7533-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21137976

ABSTRACT

This paper demonstrates an accurate model to predict the overall effective mass in micro- and nanomechanical resonators with non-uniform deformation along the transduction area. The model is verified experimentally through parameter extraction on various types of resonators with an error less than 3% well within the bounds dictated by manufacturing tolerances. Based on the model, an optimization of transduction electrode designs is proposed for micro- and nanomechanical resonators vibrating in the fabrication plane.

17.
Article in English | MEDLINE | ID: mdl-20211789

ABSTRACT

Measuring shifts in eigenstates caused by vibration localization in an array of weakly coupled resonators offers 2 distinct advantages for sensor applications compared with the technique of simply measuring resonant frequency shifts: 1) orders of magnitude enhancement in parametric sensitivity; and 2) intrinsic common mode rejection. In this paper, we experimentally demonstrate the common mode rejection in weakly coupled MEMS resonators with significant potential implications for sensor applications. The vibration behavior is studied in pairs of nearly identical MEMS resonators that are electrically coupled and subjected to small perturbations in stiffness under different ambient pressure and temperature. The shifts in the eigenstates for the same parametric perturbation in stiffness are experimentally demonstrated to be more than 3 orders of magnitude greater than corresponding resonant frequency variations. They are also shown to remain relatively constant to variations in ambient temperature and pressure. This increased relative robustness to environmental drift, along with the advantage of ultra-high parametric sensitivity, opens the door to an alternative approach to achieving higher sensitivity and stability in micromechanical sensors.

18.
J Nanosci Nanotechnol ; 9(2): 1011-4, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19441443

ABSTRACT

Understanding the energy dissipation mechanisms in single-crystal silicon MEMS/NEMS resonators are particularly important to maximizing an important figure of merit relevant for miniature sensor and signal processing applications: the Quality factor (Q) of resonance. This paper discusses thermoelastic dissipation (TED) as the dominant internal-friction mechanism in flexural mode MEMS/NEMS resonators. Criteria for optimizing the geometrical design of flexural mode MEMS/NEMS resonators are theoretically established with a view towards minimizing the TED for single-crystal silicon MEMS/NEMS flexural mode resonators.

SELECTION OF CITATIONS
SEARCH DETAIL
...