Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 128(24): 5846-5854, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38830814

ABSTRACT

Hydrogen sulfide (H2S) is an important endogenous gas transmitter that plays a critical role in various physiological and pathological processes and can also cause a negative impact on foodstuffs. In this study, we designed and synthesized a simple, easily available, high-yield, and low-cost near-infrared (λem = 710 nm) fluorescent probe, DEM-H2S, with a substantial Stokes shift (205 nm) for the detection of H2S. DEM-H2S features high selectivity and sensitivity (LOD = 80 nM) toward H2S, accompanied by a noticeable color change. Upon interaction with H2S, DEM-H2S exhibits a restored ICT (Intramolecular Charge Transfer) process, thereby manifesting near-infrared fluorescence. DEM-H2S has been successfully utilized to detect H2S in actual water samples and to monitor the spoilage of food items, such as pork, shrimp, and eggs. Furthermore, DEM-H2S enables the imaging of endogenous and exogenous H2S in living MCF-7 cells and zebrafish. Hence, DEM-H2S provides an attractive method for the detection of H2S in environmental, food, and biological systems, holding potential value in physiological and pathological research.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Zebrafish , Hydrogen Sulfide/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Animals , MCF-7 Cells , Water/chemistry , Optical Imaging , Food Contamination/analysis , Limit of Detection , Eggs/analysis , Spectrometry, Fluorescence , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
2.
Bioorg Med Chem ; 28(18): 115624, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32828433

ABSTRACT

Fructose-1,6-bisphosphatase (FBPase) is an attractive target for affecting the GNG pathway. In our previous study, the C128 site of FBPase has been identified as a new allosteric site, where several nitrovinyl compounds can bind to inhibit FBPase activity. Herein, a series of nitrostyrene derivatives were further synthesized, and their inhibitory activities against FBPase were investigated in vitro. Most of the prepared nitrostyrene compounds exhibit potent FBPase inhibition (IC50 < 10 µM). Specifically, when the substituents of F, Cl, OCH3, CF3, OH, COOH, or 2-nitrovinyl were installed at the R2 (meta-) position of the benzene ring, the FBPase inhibitory activities of the resulting compounds increased 4.5-55 folds compared to those compounds with the same groups at the R1 (para-) position. In addition, the preferred substituents at the R3 position were Cl or Br, thus compound HS36 exhibited the most potent inhibitory activity (IC50 = 0.15 µM). The molecular docking and site-directed mutation suggest that C128 and N125 are essential for the binding of HS36 and FBPase, which is consistent with the C128-N125-S123 allosteric inhibition mechanism. The reaction enthalpy calculations show that the order of the reactions of compounds with thiol groups at the R3 position is Cl > H > CH3. CoMSIA analysis is consistent with our proposed binding mode. The effect of compounds HS12 and HS36 on glucose production in primary mouse hepatocytes were further evaluated, showing that the inhibition was 71% and 41% at 100 µM, respectively.


Subject(s)
Enzyme Inhibitors/chemistry , Fructose-Bisphosphatase/antagonists & inhibitors , Styrenes/chemistry , Allosteric Site , Amino Acid Sequence , Animals , Drug Design , Enzyme Inhibitors/metabolism , Gluconeogenesis , Glucose/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Isomerism , Kinetics , Mice , Molecular Docking Simulation , Protein Binding , Structure-Activity Relationship , Styrenes/metabolism
3.
ACS Omega ; 4(21): 19145-19152, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31763537

ABSTRACT

Hydrogels have received considerable attention due to their potential applications in the fields of drug delivery, tissue engineering, and stimuli-responsive devices. Nonetheless, it is still a great difficulty in designing hydrogels with multifunctional characteristics including excellent antibacterial activity and appropriate mechanical and remarkable sensing properties. In the present study, a novel type of organic-inorganic adhesive is demonstrated, which comprises inorganic matter of amorphous calcium phosphate particles and organic substances of poly(acrylic acid) and chitosan. The hydrogel possesses excellent biocompatible and antibacterial activity, unique viscoelastic properties, high quantity of drug load, and remarkably sensitive pressure sensing, which have potential use as antibacterial biomaterials, artificially intelligent skins, and drug delivery carriers.

4.
Microb Drug Resist ; 18(6): 539-45, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22897109

ABSTRACT

SHV ß-lactamases, including SHV extended-spectrum ß-lactamases, are widespread throughout the world, and confer a broad spectrum of resistance to antibiotic drugs. Mutations ranging from single base-pair substitutions to small deletions within bla(SHV) often result in diminished activity and an increased susceptibility to ß-lactamase inhibitors. Here, we collected 1,320 clinical isolates from three hospitals in Shanghai. We developed a novel oligonucleotide microarray to detect mutations in the bla(SHV) gene, and validated the array data by direct sequencing. Sixty-two of the 1,320 isolates carried the bla(SHV) gene. The genotypes of these 62 isolates were successfully called by the microarray and were consistent with the genotypes identified by bidirectional sequencing. Sixteen different bla(SHV) alleles were identified. The SHV-1 variant was the most frequent (32.26%), followed by SHV-11 (27.42%) and SHV-12 (25.81%). Of the 62 isolates, 12 contained two different bla(SHV) alleles. Our microarray significantly facilitated the identification of bla(SHV) variants, which makes it an attractive option for the detection of SHV variants in clinical laboratories.


Subject(s)
Genes, Bacterial , Klebsiella pneumoniae/genetics , Mutation , Oligonucleotide Array Sequence Analysis/standards , beta-Lactamases/genetics , Alleles , Anti-Bacterial Agents/pharmacology , DNA Mutational Analysis , Genetic Variation , Genotype , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/isolation & purification , beta-Lactam Resistance/genetics , beta-Lactamases/classification , beta-Lactams/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...