Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36832645

ABSTRACT

The swelling characteristics of porous media in the offshore natural gas hydrate reservoir have an important effect on the stability of the reservoir. In this work, the physical property and the swelling of porous media in the offshore natural gas hydrate reservoir were measured. The results show that the swelling characteristics of the offshore natural gas hydrate reservoir are influenced by the coupling of the montmorillonite content and the salt ion concentration. The swelling rate of porous media is directly proportionate to water content and the initial porosity, and inversely proportionate to salinity. Compared with water content and salinity, the initial porosity has much obvious influence on the swelling, which the swelling strain of porous media with the initial porosity of 30% is three times more than that of montmorillonite with the initial porosity of 60%. Salt ions mainly affect the swelling of water bound by porous media. Then, the influence mechanism of the swelling characteristics of porous media on the structural characteristics of reservoir was tentatively explored. It can provide a basic date and scientific basis for furthering the mechanical characteristics of the reservoir in the hydrate exploitation in the offshore gas hydrate reservoir.

3.
Inflamm Res ; 71(7-8): 847-858, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35438360

ABSTRACT

OBJECTIVES: We identified functional genes and studied the underlying molecular mechanisms of diabetic cardiomyopathy (DCM) using bioinformatics tools. METHODS: Original gene expression profiles were obtained from the GSE21610 and GSE112556 data sets. We used GEO2R to screen the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on DEGs. Protein-protein interaction (PPI) networks of DEGs were constructed using STRING and hub genes of signaling pathways were identified using Cytoscape. Aberrant hub gene expression was verified using The Cancer Genome Atlas data set. RESULTS: The DEGs in DCM were mainly enriched in the nuclei and cytoplasm and involved in DCM and chemokine-related signaling pathways. In the PPI network, 32 nodes were chosen as hub nodes and an RNA interaction network was constructed with 517 interactions. The expression of key genes (JPIK3R1, CCR9, XIST, WDFY3.AS2, hsa-miR-144-5p, and hsa-miR-146b-5p) was significantly different between DCM and normal tissues. CONCLUSIONS: The identified hub genes could be associated with DCM pathogenesis and could be used for treating DCM.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , MicroRNAs , RNA, Long Noncoding , Computational Biology , Diabetic Cardiomyopathies/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Transcription Factors/metabolism
4.
ACS Omega ; 3(11): 14585-14591, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458142

ABSTRACT

A density function approach has been used to screen an appropriate surface modifier for oxidized coal to enhance its hydrophobicity in a flotation process. Two oxidized coal surface models, coal-COOH and coal-COONa, based on the substitution of 10-fused benzene rings with COOH and COONa functional groups, have been constructed to mimic the surface hydrophilic sites at acidic and alkaline pHs, respectively. A nonpolar molecule and five polar candidate molecules with different functional groups have been examined on each oxidized coal model surface. Our present study indicates that octane is ineffective toward increasing the surface hydrophobicity for both coal-COOH and coal-COONa models due to its preferential adsorption on hydrophobic aromatic sheet, although it can spontaneously bind to the coal model surfaces at 298 K. Unlike octane, 4-pentylpyridine will present the preferred hydrophobic conformation on both models. However, its adsorption process is favorable energetically only on the coal-COOH model. The optimized geometries of all four oxygen-containing molecules (1-methoxyheptane, 1-octanol, octanal, and octanoic acid) show that directional hydrogen bonds will be formed between their oxygenated groups and the COOH group of coal-COOH model. This results in the protrusion of the hydrocarbon chain toward the water phase, which is beneficial for increasing coal surface hydrophobicity. However, the calculated Gibbs free energies suggest that octanoic acid is the best candidate. The adsorption of all four oxygen-containing molecules on the coal-COONa model is a spontaneous process. However, only sodium octanoate can be regarded as the effective surface modifier according to its optimized adsorption conformation at alkaline pH.

5.
Langmuir ; 32(31): 7975-84, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27398713

ABSTRACT

The behavior of hydrate formation in porous sediment has been widely studied because of its importance in the investigation of reservoirs and in the drilling of natural gas hydrate. However, it is difficult to understand the hydrate nucleation and growth mechanism on the surface and in the nanopores of porous media by experimental and numerical simulation methods. In this work, molecular dynamics simulations of the nucleation and growth of CH4 hydrate in the presence of the surface and nanopores of clay are carried out. The molecular configurations and microstructure properties are analyzed for systems containing one H2O hydrate layer (System A), three H2O hydrate layers (System B), and six H2O hydrate layers (System C) in both clay and the bulk solution. It is found that hydrate formation is more complex in porous media than in the pure bulk solution and that there is cooperativity between hydrate growth and molecular diffusion in clay nanopores. The hydroxylated edge sites of the clay surface could serve as a source of CH4 molecules to facilitate hydrate nucleation. The diffusion velocity of molecules is influenced by the growth of the hydrate that forms a block in the throats of the clay nanopore. Comparing hydrate growth in different clay pore sizes reveals that the pore size plays an important role in hydrate growth and molecular diffusion in clay. This simulation study provides the microscopic mechanism of hydrate nucleation and growth in porous media, which can be favorable for the investigation of the formation of natural gas hydrate in sediments.

6.
J Mol Model ; 20(12): 2523, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25451141

ABSTRACT

The primary pyrolysis mechanisms of the sodium carboxylate group in sodium benzoate-used as a model compound of brown coal-were studied by performing quantum chemical computations using B3LYP and the CBS method. Various possible reaction pathways involving reactions such as unimolecular and bimolecular decarboxylation and decarbonylation, crosslinking, and radical attack in the brown coal matrix were explored. Without the participation of reactive radicals, unimolecular decarboxylation to release CO2 was calculated to be the most energetically favorable primary reaction pathway at the B3LYP/6-311+G (d, p) level of theory, and was also found to be more energetically favorable than decarboxylation of an carboxylic acid group. When CBS-QBS results were included, crosslinking between the sodium carboxylate group and the carboxylic acid and the decarboxylation of the sodium carboxylate group (catalyzed by the phenolic hydroxyl group) were found to be possible; this pathway competes with unimolecular decarboxylation of the sodium carboxylate group. Provided that H and CH3 radicals are present in the brown coal matrix and can access the sodium carboxylate group, accelerated pyrolysis of the sodium carboxylate group becomes feasible, leading to the release of an Na atom or an NaCO2 radical at the B3LYP/6-311+G (d, p) or CBS-QB3 level of theory, respectively.


Subject(s)
Coal , Hot Temperature , Models, Chemical , Quantum Theory , Sodium Benzoate/chemistry , Carbon Dioxide/chemistry , Carbonates/chemistry , Computer Simulation , Decarboxylation , Energy Transfer , Hydrogen/chemistry , Methane/analogs & derivatives , Methane/chemistry , Models, Molecular , Molecular Structure
7.
J Mol Model ; 20(6): 2311, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24906646

ABSTRACT

The formation and mechanism of CH4 hydrate intercalated in montmorillonite are investigated by molecular dynamics (MD) simulation. The formation process of CH4 hydrate in montmorillonite with 1 ~ 8 H2O layers is observed. In the montmorillonite, the "surface H2O" constructs the network by hydrogen bonds with the surface Si-O ring of clay, forming the surface cage. The "interlayer H2O" constructs the network by hydrogen bonds, forming the interlayer cage. CH4 molecules and their surrounding H2O molecules form clathrate hydrates. The cation of montmorillonite has a steric effect on constructing the network and destroying the balance of hydrogen bonds between the H2O molecules, distorting the cage of hydrate in clay. Therefore, the cages are irregular, which is unlike the ideal CH4 clathrate hydrates cage. The pore size of montmorillonite is another impact factor to the hydrate formation. It is quite easier to form CH4 hydrate nucleation in montmorillonite with large pore size than in montmorillonite with small pore. The MD work provides the constructive information to the investigation of the reservoir formation for natural gas hydrate (NGH) in sediments.


Subject(s)
Bentonite/chemistry , Methane/chemistry , Molecular Dynamics Simulation , Natural Gas , Water/chemistry , Energy Transfer , Hydrogen Bonding , Molecular Structure , Porosity , Silicates/chemistry , Structure-Activity Relationship
8.
J Mol Model ; 20(3): 2127, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24567153

ABSTRACT

To understand the impact of C = C double bonds in acyl chains of unsaturated triglycerides on the reaction mechanism and product composition in their initial pyrolysis process, ReaxFF molecular dynamics simulations were carried out using a molecular model, trilinolenin, at temperatures of 2000, 2250, and 2500 K. Analyses indicated that the observed pyrolysis mechanisms of unsaturated triglyceride are nearly identical to the saturated triglyceride, and the pyrolysis products also include alkanes, alkenes, alkadienes, aromatics, oxygenated species, CO2, and H2. The formation of intermediates and products is a sequential process. Three C--O bonds in trilinolenin molecule are usually successive dissociated first, leading to the formation of unsaturated C3H5· radical and straight-chain C18H29O2· (RCOO·) radicals. Following that, the deoxygenated alkenyl chain is produced through decarboxylation of RCOO · radicals with consequent release of CO2. The resulting hydrocarbon radicals undergo a variety of disproportionation, isomerization, and hydrogen-transfer reactions, yielding straight and branched-chain hydrocarbons. It was found that the scission of C--O bond and decarboxylation should preferentially occur before the cleavage of the C--C bond ß to the C = C bond in the initial decomposition process of unsaturated trilinolenin. In addition, the formation of cyclic hydrocarbons could proceed through intramolecular cyclization mechanisms, including non-radical electrocyclic, biradical cyclization and cyclization of alkenyl radical, which are inconsistent with previously proposed bimolecular Diels-Alder addition mechanisms. More rapid pyrolysis of trilinolenin would occur at higher temperatures without significantly affecting the apparent reaction mechanisms of trilinolenin pyrolysis in the considered temperature range. Aromatic ring structures are observed to be stable after formation and do not decay within the 500 ps simulation period.


Subject(s)
Hot Temperature , Models, Chemical , Models, Molecular , Molecular Dynamics Simulation , Triglycerides/chemistry , Free Radicals/chemistry , Hydrocarbons/chemistry , Hydrocarbons, Aromatic/chemistry , Kinetics , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...