Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chemosphere ; 363: 142767, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971443

ABSTRACT

Characterization and evaluation of hazardous spent V2O5-WO3/TiO2 catalysts are critical to determining their treatment or final disposal. This study employs a thermal approach to simulate the preparation of spent catalysts derived from commercial V2O5-WO3/TiO2 catalysts and investigate the structure-activity relationship of the carrier changes during the deactivation process. The results indicate that the catalyst carrier undergoes two processes: an increase in grain size and a transformation in crystal structure. Both structural and catalytic investigations demonstrate that the grain size for catalyst deactivation is 24.62 nm, and the formation of CaWO4 occurs before the crystalline transformation. The specific surface area is susceptible to an increase in grain size. The reactions of selective catalytic reduction involve the participation of both Brønsted acid and Lewis acid sites. The deactivation process of the carrier initially affects Brønsted acid sites, followed by a reduction in Lewis acid sites, resulting in a decline in NH3 adsorption capacity and oxidation. Correlation analysis reveals that changes in the physicochemical properties of the catalyst reduce the NO conversion, with the order being The grain size > Total acid amount > The surface area. It is recommended to recycle the spent catalyst if the carrier grain size is less than 25 nm. The findings of this investigation contribute to expanding the database for evaluating and understanding the physicochemical properties of spent catalysts for disposal.

2.
Med Image Anal ; 73: 102183, 2021 10.
Article in English | MEDLINE | ID: mdl-34340108

ABSTRACT

Tissue/region segmentation of pathology images is essential for quantitative analysis in digital pathology. Previous studies usually require full supervision (e.g., pixel-level annotation) which is challenging to acquire. In this paper, we propose a weakly-supervised model using joint Fully convolutional and Graph convolutional Networks (FGNet) for automated segmentation of pathology images. Instead of using pixel-wise annotations as supervision, we employ an image-level label (i.e., foreground proportion) as weakly-supervised information for training a unified convolutional model. Our FGNet consists of a feature extraction module (with a fully convolutional network) and a classification module (with a graph convolutional network). These two modules are connected via a dynamic superpixel operation, making the joint training possible. To achieve robust segmentation performance, we propose to use mutable numbers of superpixels for both training and inference. Besides, to achieve strict supervision, we employ an uncertainty range constraint in FGNet to reduce the negative effect of inaccurate image-level annotations. Compared with fully-supervised methods, the proposed FGNet achieves competitive segmentation results on three pathology image datasets (i.e., HER2, KI67, and H&E) for cancer region segmentation, suggesting the effectiveness of our method. The code is made publicly available at https://github.com/zhangjun001/FGNet.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Humans
3.
Virchows Arch ; 479(3): 443-449, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34279719

ABSTRACT

The level of human epidermal growth factor receptor-2 (HER2) protein and gene expression in breast cancer is an essential factor in judging the prognosis of breast cancer patients. Several investigations have shown high intraobserver and interobserver variability in the evaluation of HER2 staining by visual examination. In this study, we aim to propose an artificial intelligence (AI)-assisted microscope to improve the HER2 assessment accuracy and reliability. Our AI-assisted microscope was equipped with a conventional microscope with a cell-level classification-based HER2 scoring algorithm and an augmented reality module to enable pathologists to obtain AI results in real time. We organized a three-round ring study of 50 infiltrating duct carcinoma not otherwise specified (NOS) cases without neoadjuvant treatment, and recruited 33 pathologists from 6 hospitals. In the first ring study (RS1), the pathologists read 50 HER2 whole-slide images (WSIs) through an online system. After a 2-week washout period, they read the HER2 slides using a conventional microscope in RS2. After another 2-week washout period, the pathologists used our AI microscope for assisted interpretation in RS3. The consistency and accuracy of HER2 assessment by the AI-assisted microscope were significantly improved (p < 0.001) over those obtained using a conventional microscope and online WSI. Specifically, our AI-assisted microscope improved the precision of immunohistochemistry (IHC) 3 + and 2 + scoring while ensuring the recall of fluorescent in situ hybridization (FISH)-positive results in IHC 2 + . Also, the average acceptance rate of AI for all pathologists was 0.90, demonstrating that the pathologists agreed with most AI scoring results.


Subject(s)
Artificial Intelligence , Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Carcinoma, Ductal, Breast/chemistry , Image Interpretation, Computer-Assisted , Immunohistochemistry , Microscopy/instrumentation , Receptor, ErbB-2/analysis , Automation, Laboratory , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , China , Female , Humans , In Situ Hybridization, Fluorescence , Observer Variation , Predictive Value of Tests , Receptor, ErbB-2/genetics , Reproducibility of Results , Retrospective Studies
4.
NPJ Breast Cancer ; 7(1): 61, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34039982

ABSTRACT

Programmed death ligand-1 (PD-L1) expression is a key biomarker to screen patients for PD-1/PD-L1-targeted immunotherapy. However, a subjective assessment guide on PD-L1 expression of tumor-infiltrating immune cells (IC) scoring is currently adopted in clinical practice with low concordance. Therefore, a repeatable and quantifiable PD-L1 IC scoring method of breast cancer is desirable. In this study, we propose a deep learning-based artificial intelligence-assisted (AI-assisted) model for PD-L1 IC scoring. Three rounds of ring studies (RSs) involving 31 pathologists from 10 hospitals were carried out, using the current guideline in the first two rounds (RS1, RS2) and our AI scoring model in the last round (RS3). A total of 109 PD-L1 (Ventana SP142) immunohistochemistry (IHC) stained images were assessed and the role of the AI-assisted model was evaluated. With the assistance of AI, the scoring concordance across pathologists was boosted to excellent in RS3 (0.950, 95% confidence interval (CI): 0.936-0.962) from moderate in RS1 (0.674, 95% CI: 0.614-0.735) and RS2 (0.736, 95% CI: 0.683-0.789). The 2- and 4-category scoring accuracy were improved by 4.2% (0.959, 95% CI: 0.953-0.964) and 13% (0.815, 95% CI: 0.803-0.827) (p < 0.001). The AI results were generally accepted by pathologists with 61% "fully accepted" and 91% "almost accepted". The proposed AI-assisted method can help pathologists at all levels to improve the PD-L1 assay (SP-142) IC assessment in breast cancer in terms of both accuracy and concordance. The AI tool provides a scheme to standardize the PD-L1 IC scoring in clinical practice.

5.
Histopathology ; 79(4): 544-555, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33840132

ABSTRACT

AIMS: The nuclear proliferation biomarker Ki67 plays potential prognostic and predictive roles in breast cancer treatment. However, the lack of interpathologist consistency in Ki67 assessment limits the clinical use of Ki67. The aim of this article was to report a solution utilising an artificial intelligence (AI)-empowered microscope to improve Ki67 scoring concordance. METHODS AND RESULTS: We developed an AI-empowered microscope in which the conventional microscope was equipped with AI algorithms, and AI results were provided to pathologists in real time through augmented reality. We recruited 30 pathologists with various experience levels from five institutes to assess the Ki67 labelling index on 100 Ki67-stained slides from invasive breast cancer patients. In the first round, pathologists conducted visual assessment on a conventional microscope; in the second round, they were assisted with reference cards; and in the third round, they were assisted with an AI-empowered microscope. Experienced pathologists had better reproducibility and accuracy [intraclass correlation coefficient (ICC) = 0.864, mean error = 8.25%] than inexperienced pathologists (ICC = 0.807, mean error = 11.0%) in visual assessment. Moreover, with reference cards, inexperienced pathologists (ICC = 0.836, mean error = 10.7%) and experienced pathologists (ICC = 0.875, mean error = 7.56%) improved their reproducibility and accuracy. Finally, both experienced pathologists (ICC = 0.937, mean error = 4.36%) and inexperienced pathologists (ICC = 0.923, mean error = 4.71%) improved the reproducibility and accuracy significantly with the AI-empowered microscope. CONCLUSION: The AI-empowered microscope allows seamless integration of the AI solution into the clinical workflow, and helps pathologists to obtain higher consistency and accuracy for Ki67 assessment.


Subject(s)
Artificial Intelligence , Biomarkers, Tumor/analysis , Breast Neoplasms/diagnosis , Image Interpretation, Computer-Assisted/methods , Ki-67 Antigen/analysis , Microscopy/methods , Female , Humans , Image Interpretation, Computer-Assisted/instrumentation , Microscopy/instrumentation , Observer Variation , Pathology, Clinical/instrumentation , Pathology, Clinical/methods , Reproducibility of Results , Retrospective Studies
6.
Med Phys ; 47(4): 1566-1578, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31799718

ABSTRACT

PURPOSE: In this paper, for the purpose of accurate and efficient mass detection, we propose a new deep learning framework, including two major stages: Suspicious region localization (SRL) and Multicontext Multitask Learning (MCMTL). METHODS: In the first stage, SRL focuses on finding suspicious regions [regions of interest (ROIs)] and extracting multisize patches of these suspicious regions. A set of bounding boxes with different size is used to extract multisize patches, which aim to capture diverse context information. In the second stage, MCMTL networks integrate features from multisize patches of suspicious regions for classification and segmentation simultaneously, where the purpose of this stage is to keep the true positive suspicious regions and to reduce the false positive suspicious regions. RESULTS: According to the experimental results on two public datasets (i.e., CBIS-DDSM and INBreast), our method achieves the overall performance of 0.812 TPR@2.53 FPI and 0.919 TPR@0.12 FPI on test sets, respectively. CONCLUSIONS: Our proposed method suggests comparable performance to the state-of-the-art methods.


Subject(s)
Breast Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Machine Learning , Mammography
7.
J Digit Imaging ; 31(5): 680-691, 2018 10.
Article in English | MEDLINE | ID: mdl-29582242

ABSTRACT

In computer-aided diagnosis systems for breast mammography, the pectoral muscle region can easily cause a high false positive rate and misdiagnosis due to its similar texture and low contrast with breast parenchyma. Pectoral muscle region segmentation is a crucial pre-processing step to identify lesions, and accurate segmentation in poor-contrast mammograms is still a challenging task. In order to tackle this problem, a novel method is proposed to automatically segment pectoral muscle region in this paper. The proposed method combines genetic algorithm and morphological selection algorithm, incorporating four steps: pre-processing, genetic algorithm, morphological selection, and polynomial curve fitting. For the evaluation results on different databases, the proposed method achieves average FP rate and FN rate of 2.03 and 6.90% (mini MIAS), 1.60 and 4.03% (DDSM), and 2.42 and 13.61% (INBreast), respectively. The results can be comparable performance in various metrics over the state-of-the-art methods.


Subject(s)
Algorithms , Breast Neoplasms/diagnostic imaging , Diagnostic Errors/prevention & control , Mammography/methods , Pectoralis Muscles/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Breast/diagnostic imaging , Databases, Factual , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...