Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.330
Filter
1.
Exp Ther Med ; 28(1): 292, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38827468

ABSTRACT

Spinal cord injury (SCI) is a severe neurological complication following spinal fracture, which has long posed a challenge for clinicians. Microglia play a dual role in the pathophysiological process after SCI, both beneficial and detrimental. The underlying mechanisms of microglial actions following SCI require further exploration. The present study combined three different machine learning algorithms, namely weighted gene co-expression network analysis, random forest analysis and least absolute shrinkage and selection operator analysis, to screen for differentially expressed genes in the GSE96055 microglia dataset after SCI. It then used protein-protein interaction networks and gene set enrichment analysis with single genes to investigate the key genes and signaling pathways involved in microglial function following SCI. The results indicated that microglia not only participate in neuroinflammation but also serve a significant role in the clearance mechanism of apoptotic cells following SCI. Notably, bioinformatics analysis and lipopolysaccharide + UNC569 (a MerTK-specific inhibitor) stimulation of BV2 cell experiments showed that the expression levels of Anxa2, Myo1e and Spp1 in microglia were significantly upregulated following SCI, thus potentially involved in regulating the clearance mechanism of apoptotic cells. The present study suggested that Anxa2, Myo1e and Spp1 may serve as potential targets for the future treatment of SCI and provided a theoretical basis for the development of new methods and drugs for treating SCI.

2.
Article in English | MEDLINE | ID: mdl-38709609

ABSTRACT

Developing a distributed bipartite optimal consensus scheme while ensuring user-predefined performance is essential in practical applications. Existing approaches to this problem typically require a complex controller structure due to adopting an identifier-actor-critic framework and prescribed performance cannot be guaranteed. In this work, an adaptive critic learning (ACL)-based optimal bipartite consensus scheme is developed to bridge the gap. A newly designed error scaling function, which defines the user-predefined settling time and steady accuracy without relying on the initial conditions, is then integrated into a cost function. The backstepping framework combines the ACL and integral reinforcement learning (IRL) algorithm to develop the adaptive optimal bipartite consensus scheme, which contributes a critic-only controller structure by removing the identifier and actor networks in the existing methods. The adaptive law of the critic network is derived by the gradient descent algorithm and experience replay to minimize the IRL-based residual error. It is shown that a compute-saving learning mechanism can achieve the optimal consensus, and the error variables of the closed-loop system are uniformly ultimately bounded (UUB). Besides, in any bounded initial condition, the evolution of bipartite consensus is limited to a user-prescribed boundary under bounded initial conditions. The illustrative simulation results validate the efficacy of the approach.

3.
Reproduction ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38744310

ABSTRACT

Previous studies from our group and others have shown increased IncRNA H19 expression in both the eutopic endometrium and the ectopic endometriosis tissue during endometriosis. In this study, we use immunofluorescence, immunohistochemistry and protein quantification to determine that levels of aerobic glycolysis and histone lactylation; which we show are increased in endometriosis tissues. In HESC cells (Human Endometrial Stromal Cells), we found that high H19 expression resulted in abnormal glucose metabolism by examining the levels of glucose, lactate, and ATP and measuring protein levels of enzymes that participate in glycolysis. At the same time, immunofluorescence and western blotting demonstrated increased histone lactylation in H19 overexpressing cells. Altering aerobic glycolysis and histone lactylation levels through the addition of Nala (sodium lactate) and 2-DG demonstrated that increased aerobic glycolysis and histone lactylation levels resulted in enhanced cell proliferation and cell migration, contributing to endometriosis. To validate these findings in vivo, we constructed an endometriosis mouse model, demonstrating similar changes in endometriosis tissues in vivo. Both aerobic glycolysis and histone lactylation levels were elevated in endometriotic lesions. Taken together, these data demonstrate elevated expression levels of H19 in endometriosis patients promote abnormal glucose metabolism and elevated histone lactylation levels in vivo, enhancing cell proliferation and migration and promoting the progression of endometriosis. Our study provides a functional link between H19 expression and histone lactylation and glucose metabolism in endometriosis, providing new insights into disease mechanisms that could result in novel therapeutic approaches.

4.
Int Microbiol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740654

ABSTRACT

INTRODUCTION: Sulfur-oxidizing bacteria (SOB) play a key role in the biogeochemical cycling of sulfur. OBJECTIVES: To explore SOB diversity, distribution, and physicochemical drivers in five volcanic lakes and two springs in the Wudalianchi volcanic field, China. METHODS: This study analyzed microbial communities in samples via high-throughput sequencing of the soxB gene. Physical-chemical parameters were measured, and QIIME 2 (v2019.4), R, Vsearch, MEGA7, and Mothur processed the data. Alpha diversity indices and UPGMA clustering assessed community differences, while heat maps visualized intra-sample variations. Canoco 5.0 analyzed community-environment correlations, and NMDS, Adonis, and PcoA explored sample dissimilarities and environmental factor correlations. SPSS v.18.0 tested for statistical significance. RESULTS: The diversity of SOB in surface water was higher than in springs (more than 7.27 times). We detected SOB affiliated to ß-proteobacteria (72.3 %), α-proteobacteria (22.8 %), and γ-proteobacteria (4.2 %) distributed widely in these lakes and springs. Rhodoferax and Cupriavidus were most frequent in all water samples, while Rhodoferax and Bradyrhizobium are dominant in surface waters but rare in springs. SOB genera in both habitats were positively correlated. Co-occurrence analysis identified Bradyrhizobium, Blastochloris, Methylibium, and Metyhlobacterium as potential keystone taxa. Redundancy analysis (RDA) revealed positive correlations between SOB diversity and total carbon (TC), Fe2+, and total nitrogen (TN) in all water samples. CONCLUSION: The diversity and community structure of SOB in volcanic lakes and springs in the Wudalianchi volcanic group were clarified. Moreover, the diversity and abundance of SOB decreased with the variation of water openness, from open lakes to semi-enclosed lakes and enclosed lakes.

5.
Chembiochem ; : e202400254, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757240

ABSTRACT

In this work, a highly sensitive and selective method for detecting folic acid (FA) was developed using D-penicillamine (DPA) stabilized Ag/Cu alloy nanoclusters (DPA@Ag/Cu NCs). The yellow emission of DPA@Ag/Cu NCs was found to be quenched upon the addition of FA to the system. The fluorescence intensity quenching value demonstrated a linear relationship with FA concentrations ranging from 0.01 to 1200 µM, with a limit of detection (LOD) of 5.3 nM. Furthermore, the detection mechanism was investigated through various characterization analyses, including high resolution transmission electron microscopy, fluorescence spectra, ultraviolet-visible absorption spectra, and fluorescence lifetime. The results indicated that the fluorescence quenching induced by FA was a result of electron transfer from FA to the ligands of DPA@Ag/Cu NCs. The selectivity of the FA sensor was also evaluated, showing that common amino acids and inorganic ions had minimal impact on the detection of FA. Moreover, the standard addition method was successfully applied to detect FA in human serum, chewable tablets and FA tablets with promising results. The use of DPA@Ag/Cu NCs demonstrates significant potential for detecting FA in complex biological samples.

6.
Sci Total Environ ; 932: 173117, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734097

ABSTRACT

2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 µg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.


Subject(s)
Polybrominated Biphenyls , Animals , Mice , Female , Polybrominated Biphenyls/toxicity , Metabolic Networks and Pathways/drug effects , Liver/metabolism , Liver/drug effects , Environmental Pollutants/toxicity
7.
Int J Biol Macromol ; 271(Pt 1): 132398, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754670

ABSTRACT

Nattokinase (NK) is found in fermented foods and has high fibrinolytic activity, which makes it promising for biological applications. In this study, a mutant strain (Bacillus subtilis ZT-S1, 5529.56 ± 183.59 U/mL) with high NK-producing activity was obtained using 12C6+ heavy ion beam mutagenesis for the first time. The surface morphology of B. subtilis is also altered by changes in functional groups caused by heavy ion beams. Furthermore, B. subtilis ZT-S1 required more carbon and nitrogen sources and reached stabilization phase later. Comparative genome analysis revealed that most of the mutant implicated genes (oppA, appA, kinA, spoIIP) were related to spore formation. And the affected rpoA is related to the synthesis of the NK-coding gene aprE. In addition, the B. subtilis ZT-S1 obtained by mutagenesis had good genetic stability. This study further explores the factors affecting NK activity and provides a promising microbial resource for NK production in commercial applications.

8.
Sci Rep ; 14(1): 12386, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811720

ABSTRACT

Triple-negative breast cancer (TNBC) has high heterogeneity, poor prognosis, and limited treatment success. Recently, an immunohistochemistry-based surrogate classification for the "Fudan University Shanghai Cancer Center (FUSCC) subtyping" has been developed and is considered more suitable for clinical application. Seventy-one paraffin-embedded sections of surgically resected TNBC were classified into four molecular subtypes using the IHC-based surrogate classification. Genomic analysis was performed by targeted next-generation sequencing and the specificity of the subtypes was explored by bioinformatics, including survival analysis, multivariate Cox regression, pathway enrichment, Pyclone analysis, mutational signature analysis and PHIAL analysis. AKT1 and BRCA1 mutations were identified as independent prognostic factors in TNBC. TNBC molecular subtypes encompass distinct genomic landscapes that show specific heterogeneities. The luminal androgen receptor (LAR) subtype was associated with mutations in PIK3CA and PI3K pathways, which are potentially sensitive to PI3K pathway inhibitors. The basal-like immune-suppressed (BLIS) subtype was characterized by high genomic instability and the specific possession of signature 19 while patients in the immunomodulatory (IM) subtype belonged to the PD-L1 ≥ 1% subgroup with enrichment in Notch signaling, suggesting a possible benefit of immune checkpoint inhibitors and Notch inhibitors. Moreover, mesenchymal-like (MES) tumors displayed enrichment in the receptor tyrosine kinase (RTK)-RAS pathway and potential sensitivity to RTK pathway inhibitors. The findings suggest potential treatment targets and prognostic factors, indicating the possibility of TNBC stratified therapy in the future.


Subject(s)
Mutation , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Prognosis , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Genomics/methods , BRCA1 Protein/genetics , Adult , Biomarkers, Tumor/genetics , Aged , High-Throughput Nucleotide Sequencing , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism
9.
Front Public Health ; 12: 1385592, 2024.
Article in English | MEDLINE | ID: mdl-38721532

ABSTRACT

Background: Widowhood is one of the most serious issues affecting the mental health of older persons. China currently has tens of millions of widowed older adult, which is a huge group. It is of great significance to study the impacts of widowhood on their mental health and put forward some measures for improvement. Method: We used China Family Panel Studies (CFPS) data in 2020, which included 4,184 older adults. Linear regression is used to examine the relationship among widowhood, mental health, and social capital. Results: Both short-term and medium- and long-term widowhood lead to a significant increase in depression, which seriously affects the mental health of older people. At the same time, community-level and family-level social capital have significant buffering effects on the loss of mental health caused by widowhood, but this effect is heterogeneous, with different types of social capital playing different roles among different gender groups. Conclusion: The provision of care support by children and good neighborhood relationships can help mitigate the psychological impact of widowhood, and these are areas where social policy can make a difference.


Subject(s)
Mental Health , Social Capital , Widowhood , Humans , Widowhood/psychology , Widowhood/statistics & numerical data , Female , Male , Aged , Mental Health/statistics & numerical data , China , Middle Aged , Depression/psychology , Aged, 80 and over , Social Support
10.
Acc Chem Res ; 57(10): 1550-1563, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723018

ABSTRACT

ConspectusLithium ion batteries (LIBs) with inorganic intercalation compounds as electrode active materials have become an indispensable part of human life. However, the rapid increase in their annual production raises concerns about limited mineral reserves and related environmental issues. Therefore, organic electrode materials (OEMs) for rechargeable batteries have once again come into the focus of researchers because of their design flexibility, sustainability, and environmental compatibility. Compared with conventional inorganic cathode materials for Li ion batteries, OEMs possess some unique characteristics including flexible molecular structure, weak intermolecular interaction, being highly soluble in electrolytes, and moderate electrochemical potentials. These unique characteristics make OEMs suitable for applications in multivalent ion batteries, low-temperature batteries, redox flow batteries, and decoupled water electrolysis. Specifically, the flexible molecular structure and weak intermolecular interaction of OEMs make multivalent ions easily accessible to the redox sites of OEMs and facilitate the desolvation process on the redox site, thus improving the low-temperature performance, while the highly soluble nature enables OEMs as redox couples for aqueous redox flow batteries. Finally, the moderate electrochemical potential and reversible proton storage and release of OEMs make them suitable as redox mediators for water electrolysis. Over the past ten years, although various new OEMs have been developed for Li-organic batteries, Na-organic batteries, Zn-organic batteries, and other battery systems, batteries with OEMs still face many challenges, such as poor cycle stability, inferior energy density, and limited rate capability. Therefore, previous reviews of OEMs mainly focused on organic molecular design for organic batteries or strategies to improve the electrochemical performance of OEMs. A comprehensive review to explore the characteristics of OEMs and establish the correlation between these characteristics and their specific application in energy storage and conversion is still lacking.In this Account, we initially provide an overview of the sustainability and environmental friendliness of OEMs for energy storage and conversion. Subsequently, we summarize the charge storage mechanisms of the different types of OEMs. Thereafter, we explore the characteristics of OEMs in comparison with conventional inorganic intercalation compounds including their structural flexibility, high solubility in the electrolyte, and appropriate electrochemical potential in order to establish the correlations between their characteristics and potential applications. Unlike previous reviews that mainly introduce the electrochemical performance progress of different organic batteries, this Account specifically focuses on some exceptional applications of OEMs corresponding to the characteristics of organic electrode materials in energy storage and conversion, as previously published by our groups. These applications include monovalent ion batteries, multivalent ion batteries, low-temperature batteries, redox flow batteries with soluble OEMs, and decoupled water electrolysis employing organic electrodes as redox mediators. We hope that this Account will make an invaluable contribution to the development of organic electrode materials for next-generation batteries and help to unlock a world of potential energy storage applications.

11.
AJOG Glob Rep ; 4(2): 100353, 2024 May.
Article in English | MEDLINE | ID: mdl-38818346

ABSTRACT

We reported 5 patients with unilateral or bilateral tubal discontinuity between the ampulla and fimbria, occasionally detected through laparoscopy combined with hysteroscopy at the Reproductive Hospital Affiliated with Shandong University from 2017 to 2023. Three cases were observed to have this malformation on the left fallopian tube, 1 case on the right side, and 1 case bilaterally. None of these cases were combined with urological malformations. After surgery, there was 1 instance of postoperative delivery, 1 ongoing pregnancy, and 3 not yet conceived. The congenital ampulla and fimbria interruption of the fallopian tube may be independent of other significant deformities of reproductive or renal tracts. However, it can lead to hydrosalpinx and primary or secondary infertility. Surgical management options, such as salpingostomy, salpingectomy, and tubal ligation, have shown the potential to improve pregnancy outcomes.

12.
Biomed Pharmacother ; 175: 116739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759288

ABSTRACT

BACKGROUND: Ketamine, as a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was originally used in general anesthesia. Epidemiological data show that ketamine has become one of the most commonly abused drugs in China. Ketamine administration might cause cognitive impairment; however, its molecular mechanism remains unclear. The glymphatic system is a lymphoid system that plays a key role in metabolic waste removal and cognitive regulation in the central nervous system. METHODS: Focusing on the glymphatic system, this study evaluated the behavioral performance and circulatory function of the glymphatic system by building a short-term ketamine administration model in mice, and detected the expression levels of the 5-HT2c receptor, ΔFosb, Pten, Akt, and Aqp4 in the hippocampus. Primary astrocytes were cultured to verify the regulatory relationships among related indexes using a 5-HT2c receptor antagonist, a 5-HT2c receptor short interfering RNA (siRNA), and a ΔFosb siRNA. RESULTS: Ketamine administration induced ΔFosb accumulation by increasing 5-HT2c receptor expression in mouse hippocampal astrocytes and primary astrocytes. ΔFosb acted as a transcription factor to recognize the AATGATTAAT bases in the 5' regulatory region of the Aqp4 gene (-1096 bp to -1087 bp), which inhibited Aqp4 expression, thus causing the circulatory dysfunction of the glymphatic system, leading to cognitive impairment. CONCLUSIONS: Although this regulatory mechanism does not involve the Pten/Akt pathway, this study revealed a new mechanism of ketamine-induced cognitive impairment in non-neuronal systems, and provided a theoretical basis for the safety of clinical treatment and the effectiveness of withdrawal.


Subject(s)
Astrocytes , Cognitive Dysfunction , Glymphatic System , Hippocampus , Ketamine , Animals , Ketamine/pharmacology , Ketamine/toxicity , Astrocytes/drug effects , Astrocytes/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Mice , Male , Hippocampus/drug effects , Hippocampus/metabolism , Glymphatic System/drug effects , Glymphatic System/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Aquaporin 4/metabolism , Aquaporin 4/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Mice, Inbred C57BL , Cells, Cultured , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics
13.
Nat Commun ; 15(1): 4498, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802467

ABSTRACT

Recycling strategies for mixed plastics and textile blends currently aim for recycling only one of the components. Here, we demonstrate a water coupling strategy to co-hydrolyze polyester/cotton textile blends into polymer monomers and platform chemicals in gamma-valerolactone. The blends display a proclivity for achieving an augmented 5-hydroxymethylfurfural yield relative to the degradation of cotton alone. Controlled experiments and preliminary mechanistic studies underscore that the primary driver behind this heightened conversion rate lies in the internal water circulation. The swelling and dissolving effect of gamma-valerolactone on polyester enables a fast hydrolysis of polyester at much lower concentration of acid than the one in the traditional hydrolysis methods, effectively mitigating the excessive degradation of cotton-derived product and undesirable product formation. In addition, the system is also applicable to different kinds of blends and PET mixed plastics. This strategy develops an attractive path for managing end-of-life textiles in a sustainable and efficient way.

14.
PLoS One ; 19(5): e0303235, 2024.
Article in English | MEDLINE | ID: mdl-38728287

ABSTRACT

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Subject(s)
Autophagy , Galectin 3 , Machine Learning , Neurons , Animals , Rats , Galectin 3/metabolism , Galectin 3/genetics , Glutamic Acid/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neurons/metabolism , Protein Interaction Maps , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics
15.
J Phys Chem Lett ; 15(18): 5008-5015, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38695764

ABSTRACT

Second-harmonic generation (SHG) has rapidly advanced with the miniaturization of on-chip devices and has found many applications, including optical frequency conversion, nonlinear imaging, and quantum technology. However, owing to the obvious phase-matching constraints involved in nonlinear optical interactions in bulk crystals and the decrease in the length and strength of nonlinear interactions in nanophotonic and surface/interface systems, improving the SHG efficiency and manipulating its optical properties at the nanoscale are challenging tasks. Herein, a monocrystalline silver microplate and nanocube-coupled nanocavity with double-resonance plasmonic modes and an ultrasmall gap were constructed, resulting in efficiently enhanced SHG. In particular, the SHG from the silver microplate (111) is polarization-dependent, and the anisotropy of the SHG in the plasmonic nanocavity can be further controlled via the superposition of symmetries at the interface and plasmonic waveguide-cavity modes. The interfacial SHG provides technology for developing lattice surface atomic arrangement and nanostructure rapid characterization, nonlinear light sources, and on-chip nonlinear nanophotonic devices.

16.
Sci Rep ; 14(1): 8125, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38582956

ABSTRACT

CD74 is a type-II transmembrane glycoprotein that has been linked to tumorigenesis. However, this association was based only on phenotypic studies, and, to date, no in-depth mechanistic studies have been conducted. In this study, combined with a multi-omics study, CD74 levels were significantly upregulated in most cancers relative to normal tissues and were found to be predictive of prognosis. Elevated CD74 expression was associated with reduced levels of mismatch-repair genes and homologous repair gene signatures in over 10 tumor types. Multiple fluorescence staining and bulk, spatial, single-cell transcriptional analyses indicated its potential as a marker for M1 macrophage infiltration in pan-cancer. In addition, CD74 expression was higher in BRCA patients responsive to conventional chemotherapy and was able to predict the prognosis of these patients. Potential CD74-activating drugs (HNHA and BRD-K55186349) were identified through molecular docking to CD74. The findings indicate activation of CD74 may have potential in tumor immunotherapy.


Subject(s)
Macrophages , Neoplasms , Humans , Prognosis , Molecular Docking Simulation , Macrophages/metabolism , Neoplasms/genetics , Neoplasms/metabolism
17.
Cancer Cell ; 42(4): 552-567.e6, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593781

ABSTRACT

Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.


Subject(s)
Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/pharmacology , Network Pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction , Leukemia/drug therapy
18.
Biofabrication ; 16(3)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38569491

ABSTRACT

Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Spinal Cord Injuries , Tissue Scaffolds , Spinal Cord Injuries/therapy , Bioprinting/methods , Humans , Animals , Tissue Scaffolds/chemistry , Tissue Engineering , Biocompatible Materials/chemistry
19.
Genes (Basel) ; 15(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674346

ABSTRACT

Ketosis is a common metabolic disorder in the early lactation of dairy cows. It is typically diagnosed by measuring the concentration of ß-hydroxybutyrate (BHB) in the blood. This study aimed to estimate the genetic parameters of blood BHB and conducted a genome-wide association study (GWAS) based on the estimated breeding value. Phenotypic data were collected from December 2019 to August 2023, comprising blood BHB concentrations in 45,617 Holstein cows during the three weeks post-calving across seven dairy farms. Genotypic data were obtained using the Neogen Geneseek Genomic Profiler (GGP) Bovine 100 K SNP Chip and GGP Bovine SNP50 v3 (Illumina Inc., San Diego, CA, USA) for genotyping. The estimated heritability and repeatability values for blood BHB levels were 0.167 and 0.175, respectively. The GWAS result detected a total of ten genome-wide significant associations with blood BHB. Significant SNPs were distributed in Bos taurus autosomes (BTA) 2, 6, 9, 11, 13, and 23, with 48 annotated candidate genes. These potential genes included those associated with insulin regulation, such as INSIG2, and those linked to fatty acid metabolism, such as HADHB, HADHA, and PANK2. Enrichment analysis of the candidate genes for blood BHB revealed the molecular functions and biological processes involved in fatty acid and lipid metabolism in dairy cattle. The identification of novel genomic regions in this study contributes to the characterization of key genes and pathways that elucidate susceptibility to ketosis in dairy cattle.


Subject(s)
3-Hydroxybutyric Acid , Genome-Wide Association Study , Lactation , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , 3-Hydroxybutyric Acid/blood , Genome-Wide Association Study/methods , Genome-Wide Association Study/veterinary , Female , Lactation/genetics , Ketosis/veterinary , Ketosis/genetics , Ketosis/blood , Genetic Background , Cattle Diseases/genetics , Cattle Diseases/blood , Genotype
20.
Cell Death Discov ; 10(1): 193, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664375

ABSTRACT

Micro RNAs (miRs) have been implicated in various tumorigenic processes. Osteosarcoma (OS) is a primary bone malignancy seen in adolescents. However, the mechanism of miRs in OS has not been fully demonstrated yet. Here, miR-134-5p was found to inhibit OS progression and was also expressed at significantly lower levels in OS tissues and cells relative to normal controls. miR-134-5p was found to reduce vasculogenic mimicry, proliferation, invasion, and migration of OS cells, with miR-134-5p knockdown having the opposite effects. Mechanistically, miR-134-5p inhibited expression of the ITGB1/MMP2/PI3K/Akt axis, thus reducing the malignant features of OS cells. In summary, miR-134-5p reduced OS tumorigenesis by modulation of the ITGB1/MMP2/PI3K/Akt axis, suggesting the potential for using miR-134-5p as a target for treating OS.

SELECTION OF CITATIONS
SEARCH DETAIL
...