Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Gen Physiol Biophys ; 42(2): 159-167, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36896945

ABSTRACT

In this study, we have screened genes involved in myocardial hypertrophy (MH) using a mice model for compensatory stress overload (transverse aortic constriction, TAC) and bioinformatics. Microarrays were downloaded, and according to the Venn diagram, three groups of data intersections were obtained. Gene function was analyzed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), whereas protein-protein interactions (PPI) were analyzed using the STRING database. A mouse aortic arch ligation model was established to verify and screen the expression of hub genes. A total of 53 (DEGs) and 32 PPI genes were screened out. GO analysis showed DEGs mainly involved in cytokine and peptide inhibitor activity. KEGG analysis focused on ECM receptor interaction and osteoclast differentiation. Expedia co-expression gene network analysis showed that Serpina3n, Cdkn1a, Fos, Col5a2, Fn1 and Timp1 participated in the occurrence and development of MH. RT-qPCR verified that all the other 9 hub genes except Lox were highly expressed in TAC mice. This study lays a foundation for further study on the molecular mechanism of MH and for screening of molecular markers.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Animals , Mice , Biomarkers , Computational Biology
2.
Front Microbiol ; 12: 703929, 2021.
Article in English | MEDLINE | ID: mdl-34557167

ABSTRACT

The aim of this study was to explore the effect of short-chain inulin on cecal microbiota of high-fat diet-fed leptin knockout mice and the different influences of cecal microbiota on wild-type and leptin knockout mice. A total of 18 specific pathogen-free male C57BL/6J wild-type mice and 18 C57BL/6J leptin knockout mice (OB/OB mice) were selected. Mice were divided into six groups according to their genotype: wild-type mice have three groups, including the normal diet group (CT), 60% high-fat diet group (CH), and 60% high fat with 10% short-chain inulin group (CHI); OB/OB mice were also divided into three groups, including the normal diet group (OT), 60% high-fat diet group (OH), and 60% high fat with 10% short-inulin group (OHI). The mice were fed for 8 weeks to analyze the diversity of cecal microbiota. The results show that compared with CH and OH, the variety of cecal microbiota was significantly reduced in CH and OH and further reduced in CHI and OHI. Bifidobacterium and Lactobacillus are the biomarkers in genus level. Dietary short-chain inulin significantly enhanced Bifidobacterium in OHI compared with OH (p < 0.01) and significantly reduced in CHI and compared with CH (p < 0.01). Lactobacillus was significantly enhanced in CHI and OHI compared with CH and OH, respectively (p < 0.01). Blautia was significantly enhanced in CH and OH compared with other groups (p < 0.01). Both Escherichia-Shigella and Enterococcus were significantly reduced in CHI and OHI, compared with CH and OH, respectively (p < 0.05). Escherichia-Shigella was even lower than CT and OT in CHI and OHI. Functional prediction of microbial communities showed that the abundance of amino acid sugar and nucleotide sugar metabolism pathways were significantly enhanced (p < 0.05) in CH and OH, and OH was significantly higher than CH (p < 0.05). Among the leptin knockout groups, PICRUSt2 function prediction showed that the fatty acid metabolism pathway significantly reduced (p < 0.05) in OHI and OT compared with OH. In conclusion, short-chain inulin modulated the dysbiosis induced by high-fat diet, improved probiotics growth and inhibited conditioned pathogenic bacteria, and the influences were significantly different in wild-type and leptin knockout mice.

SELECTION OF CITATIONS
SEARCH DETAIL