Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 12(1): 262, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37914682

ABSTRACT

Anomalous Floquet topological insulators with vanishing Chern numbers but supporting chiral edge modes are attracting more and more attention. Since the existing anomalous Floquet topological insulators usually support only one kind of chiral edge mode even at a large lattice size, they are unscalable and unapplicable for multistate topological quantum systems. Recently, fractal topological insulators with self-similarity have been explored to support more nontrivial modes. Here, we demonstrate the first experimental realization of fractal photonic anomalous Floquet topological insulators based on dual Sierpinski carpet consisting of directional couplers using the femtosecond laser direct writing. The fabricated lattices support much more kinds of chiral edge states with fewer waveguides and enable perfect hopping of quantum states with near unit transfer efficiency. Instead of zero-dimensional bound modes for quantum state transport in previous laser direct-written topological insulators, we generate multiple propagating single-photon chiral edge states in the fractal lattice and observe high-visibility quantum interferences. These suggest the successful realization of highly indistinguishable single-photon chiral edge states, which can be applied in various quantum operations. This work provides the potential for enhancing the multi-fold manipulation of quantum states, enlarging the encodable quantum information capacity in a single lattice via high-dimensional encoding and many other fractal applications.

2.
ACS Appl Mater Interfaces ; 15(30): 36899-36907, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37469253

ABSTRACT

Self-propelled autonomous devices have broad application prospects in energy conservation, environmental protection, and biomedical engineering. Nevertheless, the driving force always consumes external energy or special chemicals. Here, a novel and green droplet-driven device (DDD) consisting of superhydrophilic triangles on a superhydrophobic plate is processed only by a femtosecond laser. The water droplet flows into water along the superhydrophilic channel and forms a jet to provide driving force for the DDD, whose strength can be manipulated by changing the point angle of the triangle and the volume of the droplet. By fabricating multiple or special channels, the DDD can translate and rotate along the designed track and even carry objects. This provides a new route for the fabrication of green self-propelled autonomous devices and their applications in the fields of intelligent systems and environmental protection.

3.
EMBO J ; 40(24): e108069, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34704268

ABSTRACT

Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that asparagine-fed mice showed better cold tolerance. In mice with diet-induced obesity, the asparagine-fed group was more responsive to ß3-adrenergic receptor agonists, manifesting in blunted body weight gain and improved glucose tolerance. Metabolomics and 13 C-glucose flux analysis revealed that asparagine supplement spurred glycolysis to fuel thermogenesis and lipogenesis in adipocytes. Mechanistically, asparagine stimulated the mTORC1 pathway, which promoted expression of thermogenic genes and key enzymes in glycolysis. These findings show that asparagine bioavailability affects glycolytic and thermogenic activities in adipose tissues, providing a possible nutritional strategy for improving systemic energy homeostasis.


Subject(s)
Asparagine/pharmacology , Glycolysis/drug effects , Signal Transduction/drug effects , Thermogenesis/drug effects , Animals , Cells, Cultured , Cold Temperature , Gene Expression Regulation/drug effects , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Metabolomics , Mice
4.
Adv Sci (Weinh) ; 8(16): e2102060, 2021 08.
Article in English | MEDLINE | ID: mdl-34180153

ABSTRACT

Histone deacetylases (HDACs) are widely involved in many biological processes, as well as in control of brown and beige adipose physiology, but the precise molecular mechanisms by which HDACs are assembled into transcriptional machinery to fine-tune thermogenic program remain ill-defined. PWWP domain containing 2b (PWWP2B), which is identified as a component of the nucleosome remodeling and deacetylation complex (NuRD), interacts and stabilizes HDAC1/2 at the thermogenic gene promoters to suppress their expression. Ablation of Pwwp2b promotes adipocyte thermogenesis and ameliorates diet-induced obesity in vivo. Intriguingly, Pwwp2b is not only a brown fat-enriched gene but also dramatically induced by cold and sympathetic stimulation, which may serve as a physiological brake to avoid over-activation of thermogenesis in brown and beige fat cells.

5.
Proc Natl Acad Sci U S A ; 117(36): 22413-22422, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839323

ABSTRACT

Brown and beige adipocytes harbor the thermogenic capacity to adapt to environmental thermal or nutritional changes. Histone methylation is an essential epigenetic modification involved in the modulation of nonshivering thermogenesis in adipocytes. Here, we describe a molecular network leading by KMT5c, a H4K20 methyltransferase, that regulates adipocyte thermogenesis and systemic energy expenditure. The expression of Kmt5c is dramatically induced by a ß3-adrenergic signaling cascade in both brown and beige fat cells. Depleting Kmt5c in adipocytes in vivo leads to a decreased expression of thermogenic genes in both brown and subcutaneous (s.c.) fat tissues. These mice are prone to high-fat-diet-induced obesity and develop glucose intolerance. Enhanced transformation related protein 53 (Trp53) expression in Kmt5c knockout (KO) mice, that is due to the decreased repressive mark H4K20me3 on its proximal promoter, is responsible for the metabolic phenotypes. Together, these findings reveal the physiological role for KMT5c-mediated H4K20 methylation in the maintenance and activation of the thermogenic program in adipocytes.


Subject(s)
Adipocytes, Beige/physiology , Adipocytes, Brown/physiology , Histone-Lysine N-Methyltransferase , Thermogenesis/physiology , Tumor Suppressor Protein p53/metabolism , Adipocytes, Beige/metabolism , Adipocytes, Brown/metabolism , Animals , Diet, High-Fat , Female , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Male , Mice , Mice, Knockout , Tumor Suppressor Protein p53/genetics
6.
Micromachines (Basel) ; 11(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31972956

ABSTRACT

Femtosecond laser direct writing through two-photon polymerization has been widely used in precision fabrication of three-dimensional microstructures but is usually time consuming. In this article, we report the rapid fabrication of continuous surface Fresnel lens array through femtosecond laser three-dimensional focal field engineering. Each Fresnel lens is formed by continuous two-photon polymerization of the two-dimensional slices of the whole structure with one-dimensional scan of the corresponding two-dimensional engineered intensity distribution. Moreover, we anneal the lens array to improve its focusing and imaging performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...