Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fundam Res ; 2(5): 667-673, 2022 Sep.
Article in English | MEDLINE | ID: mdl-38933129

ABSTRACT

Over the past several years, high- ß N experiments have been carried out on HL-2A. The high- ß N is realized using double transport barriers (DTBs) with hybrid scenarios. A stationary high- ß N ( > 2 ) scenario was obtained by pure neutral-beam injection (NBI) heating. Transient high performance was also achieved, corresponding to ß N ≥ 3 , n e / n e G ∼ 0.6 , H 98 ∼ 1.5 , f b s ∼ 30 % , q 95 ∼ 4.0 , and G ∼ 0.4 . The high- ß N scenario was successfully modeled using integrated simulation codes, that is, the one modeling framework for integrated tasks (OMFIT). In high- ß N plasmas, magnetohydrodynamic (MHD) instabilities are abundant, including low-frequency global MHD oscillation with n = 1, high-frequency coherent mode (HCM) at the edge, and neoclassical tearing mode (NTM) and Alfvénic modes in the core. In some high- ß N discharges, it is observed that the NTMs with m / n = 3 / 2 limit the growth of the plasma energy and decrease ß N . The low-n global MHD oscillation is consistent with the coupling of destabilized internal (m/n = 1/1) and external (m/n = 3/1 or 4/1) modes, and plays a crucial role in triggering the onset of ELMs. Achieving high- ß N on HL-2A suggests that core-edge interplay is key to the plasma confinement enhancement mechanism. Experiments to enhance ß N will contribute to future plasma operation, such as international thermonuclear experimental reactor .

2.
Rev Sci Instrum ; 88(11): 113504, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195413

ABSTRACT

The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.

3.
Rev Sci Instrum ; 85(5): 053511, 2014 May.
Article in English | MEDLINE | ID: mdl-24880373

ABSTRACT

A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ~20 nm in depth and ~500 µm or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern.

SELECTION OF CITATIONS
SEARCH DETAIL
...