Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611482

ABSTRACT

The perennial legume alfalfa (Medicago sativa L.) is of high value in providing cheap and high-nutritive forages. Due to a lack of tillage during the production period, the soil in which alfalfa grows prunes to become compacted through highly mechanized agriculture. Compaction deteriorates the soil's structure and fertility, leading to compromised alfalfa development and productivity. However, the way alfalfa responses to different levels of soil compaction and the underlying molecular mechanism are still unclear. In this study, we systematically evaluated the effects of gradient compacted soil on the growth of different cultivars of alfalfa, especially the root system architecture, phytohormones and internal gene expression profile alterations. The results showed that alfalfa growth was facilitated by moderate soil compaction, but drastically inhibited when compaction was intensified. The inhibition effect was universal across different cultivars, but with different severity. Transcriptomic and physiological studies revealed that the expression of a set of genes regulating the biosynthesis of lignin and flavonoids was significantly repressed in compaction treated alfalfa roots, and this might have resulted in a modified secondary cell wall and xylem vessel formation. Phytohormones, like ABA, are supposed to play pivotal roles in the regulation of the overall responses. These findings provide directions for the improvement of field soil management in alfalfa production and the molecular breeding of alfalfa germplasm with better soil compaction resilience.

2.
Chemosphere ; 290: 133368, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34933027

ABSTRACT

Although the widespread use of nanoparticles has been reported in various fields, the toxic mechanisms of molecular regulation involved in the alfalfa treated by nanomaterials is still in the preliminary research stage. In this study, Bara 310 SC (Bara, tolerant genotype) and Gold Empress (Gold, susceptible genotype) were used to investigate how the leaves of alfalfa interpret the physiological responses to graphene stress based on metabolome and transcriptome characterizations. Herein, graphene at different concentrations (0, 1% and 2%, w/w) were selected as the analytes. Physiological results showed antioxidant defence system and photosynthesis was significantly disturbed under high environmental concentration of graphene. With Ultra high performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS), 406 metabolites were detected and 62/13 and 110/58 metabolites significantly changed in the leaves of Gold/Bara under the 1% and 2%-graphene treatments (w/w), respectively. The most important metabolites which were accumulated under graphene stress includes amino acids, flavonoids, organic acids and sugars. Transcriptomic analysis reveals 1125 of core graphene-responsive genes in alfalfa that was robustly differently expressed in both genotypes. And differential expression genes (DEGs) potentially related to photosynthetic enzymes, antioxidant enzymes, amino acids metabolism, and sucrose and starch metabolic which finding was supported by the metabolome study. Gold was more disturbed by graphene stress at both transcriptional and metabolic levels, since more stress-responsive genes/metabolites were identified in Gold. A comprehensive analysis of transcriptomic and metabolomic data highlights the important role of amino acid metabolism and nicotinate and nicotinamide metabolism pathways for graphene tolerance in alfalfa. Our study provide necessary information for better understanding the phytotoxicity molecular mechanism underlying nanomaterials tolerance of plant.


Subject(s)
Graphite , Medicago sativa , Gene Expression Regulation, Plant , Graphite/toxicity , Medicago sativa/genetics , Metabolomics , Tandem Mass Spectrometry , Transcriptome
3.
Plant Mol Biol ; 105(3): 287-302, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33104943

ABSTRACT

KEY MESSAGE: Beyond the role of a nutrient reservoir during germination, the endosperm of wheat seeds also responds to different abiotic stresses via modification of the protein profiles. The endosperm is the main component of wheat seeds. During seed germination, it provides nutrients to support the embryo development, and its constituents vary under environmental stresses such as drought, salinity and submergence that are associated with disordered water supply. However, the molecular mechanism of these stress responses remains unclear. In this study, a comparative label-free proteomic analysis was performed on endosperm from the germinating wheat seeds subjected to PEG, NaCl and submergence treatments. In total, 2273 high confidence proteins were detected, and 234, 207 and 209 of them were identified as differentially expressed proteins (DEPs) under the three stresses, respectively. Functional classification revealed that the DEPs were mainly involved in protein, amino acid and organic acid metabolic process in all stress treatments. While some other metabolic processes were highlighted in one or two of the stresses specifically, such as oxidative phosphorylation in PEG and submergence, and ß-alanine metabolism in PEG and NaCl treatments. The identification of a series of stress-related proteins and their biased expression in different stresses indicates the active stress-responding role of endosperm beyond a simple nutrient reservoir during germination, while the overall stress responses of the endosperm were found to be moderate and lag behind the embryo. Besides, some fundamental processes and DEPs shared by the three stresses could be selected priorly for future molecular breeding researches. Our results provide new insights into the mechanism of endosperm responses to abiotic stresses during seed germination.


Subject(s)
Droughts , Endosperm/metabolism , Germination , Proteomics , Salinity , Seeds/metabolism , Triticum/growth & development , Triticum/metabolism , Endosperm/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Germination/drug effects , Plant Proteins/metabolism , Polyethylene Glycols/pharmacology , Protein Interaction Maps/drug effects , Proteolysis/drug effects , Proteome/metabolism , Seeds/growth & development , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Transcription, Genetic/drug effects , Triticum/drug effects , Triticum/genetics , Ubiquitin/metabolism
4.
J Proteomics ; 220: 103756, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32201361

ABSTRACT

Wheat (Triticum aestivum L.) is one of the major crops worldwide and its production is inevitably subjected to various biotic/abiotic stresses during the life cycle. Drought, salinity and flooding are among the most severe abiotic stresses restricting wheat yields and could occur at very early stages such as seed germination. How wheat seed germination responds to these different stresses remains incomplete. To fill the information gap, a label-free proteomic analysis was applied to decipher the proteomic profiling of the germinating wheat seeds subjected to PEG, NaCl and submergence treatments. In total, 4295 proteins were detected, of which 465, 397 and 732 showed significant alterations in abundance under those stresses when compared with control. A common denominator found in the response observed to all three stresses are changes related to small molecule metabolic processes, and particularly in pathways associated with phenylpropanoid biosynthesis and fatty acid degradation. It was also noticeable that pathways like cysteine and methionine metabolism in the PEG or submergence treatment and starch and sucrose metabolism in the submergence treatment are specifically pronounced. Functional analysis of putative proteins participating in these pathways revealed distinct responsive patterns across different stresses. SIGNIFICANCE: Wheat (Triticum aestivum L.) is one of the most important staple crops in the world, but its growth and productivity are frequently restrained by stresses such as drought, salinity and flooding. To date, many resources have been documented to investigate how wheat responds and adapts to these individual stresses during plant development and yield formation, but little attention was paid to the understandings of the internal link between different conditions, especially during the germination process, a critical stage that determines the optimal growth of wheat. In this study, we carried out the proteome profiling of the germinating seeds of a common wheat cultivar, Chinese Spring, subjected to PEG, NaCl and submergence stresses. We found that the phenylpropanoid biosynthesis and fatty acid degradation pathways were enriched as the ubiquitous stress responses, while some pathways were stress-specific, for instance, starch and sucrose metabolism against submergence. The changes in some of the altered processes were further validated by physiological and molecular approaches. Our results suggest that the overall pathway profiles concerned with the three stresses were similar, but the specific procedures and components in each process varied greatly. The altered proteins and processes can be taken as effective candidates in future breeding and agronomic modification researches.


Subject(s)
Germination , Triticum , Dissection , Droughts , Plant Breeding , Plant Proteins , Proteomics , Salinity , Seeds , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...