Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 917
Filter
1.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826457

ABSTRACT

Protein phosphatase, Mg 2+ /Mn 2+ dependent 1D (PPM1D), is a serine/threonine phosphatase that is recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses the activation of p53. Consistent with its oncogenic properties, genetic loss or pharmacologic inhibition of PPM1D impairs tumor growth and sensitizes cancer cells to cytotoxic therapies in a wide range of preclinical models. Given the therapeutic potential of targeting PPM1D specifically and the DDR and p53 pathway more generally, we sought to deepen our biological understanding of PPM1D as a drug target and determine how PPM1D inhibition differs from other therapeutic approaches to activate the DDR. We performed a high throughput screen to identify new allosteric inhibitors of PPM1D, then generated and optimized a suite of enzymatic, cell-based, and in vivo pharmacokinetic and pharmacodynamic assays to drive medicinal chemistry efforts and to further interrogate the biology of PPM1D. Importantly, this drug discovery platform can be readily adapted to broadly study the DDR and p53. We identified compounds distinct from previously reported allosteric inhibitors and showed in vivo on-target activity. Our data suggest that the biological effects of inhibiting PPM1D are distinct from inhibitors of the MDM2-p53 interaction and standard cytotoxic chemotherapies. These differences also highlight the potential therapeutic contexts in which targeting PPM1D would be most valuable. Therefore, our studies have identified a series of new PPM1D inhibitors, generated a suite of in vitro and in vivo assays that can be broadly used to interrogate the DDR, and provided important new insights into PPM1D as a drug target.

2.
Org Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842216

ABSTRACT

We describe a simple and robust oxidation strategy for preparing N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. We find for the first time that l-thioproline can be used as a protective agent to prevent the nitrosation of N-terminal thiazolidine during peptide hydrazide oxidation. The thioproline-based oxidation strategy has been successfully applied to the chemical synthesis of CC chemokine ligand-2 (69aa) and omniligase-C (113aa), thereby demonstrating its utility in hydrazide-based native chemical ligation.

3.
Acta Diabetol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831202

ABSTRACT

AIM: Liver fibrosis (LF) is a common complication of diabetes mellitus (DM). Studies have found that vitamin D (VD), as a modifiable factor has been reported to be associated with LF. The relationship between serum VD concentration and LF in DM patients has rarely been reported. The aim of this study was to assess the association between serum VD concentration and LF in DM patients. METHODS: In this cross-sectional study, data of DM patients aged ≥ 45 years were extracted from the National Health and Nutrition Examination Survey (NHANES 2017-2018). Serum VD concentration was measured by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Vibration controlled transient elastography (VCTE) was used to measure liver stiffness. Covariates included sociodemographic information, lifestyles, laboratory data, diseases history were extracted from the database. The weighted univariable and multivariable logistic regression models were utilized to explore the association between serum VD concentration and LF in DM patients, and were described as odds ratio (ORs) and 95% confidence intervals (CIs). Subgroup analyses based on BMI, liver steatosis, hypertension and dyslipidemia were further assessed the association. RESULTS: A total of 799 patients were included, of which 188 (23.53%) had LF. Higher serum VD concentration was associated with the lower odds of LF (OR = 0.33, 95% CI 0.19-0.59) and advanced LF (OR = 0.31, 95% CI 0.17-0.55) in DM patients after adjustment for race, liver steatosis, BMI, smoking, drinking, AST, ALT and physical activity, especially in patients with liver steatosis (OR = 0.28, 95% CI 0.13-0.59) and dyslipidemia (OR = 0.31, 95% CI 0.14-0.66), respectively. CONCLUSIONS: High serum VD concentration may have a potential benefit for maintain the liver health in DM patients.

5.
Nat Commun ; 15(1): 4066, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744885

ABSTRACT

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Subject(s)
Archaea , Genome, Archaeal , Hot Springs , Metagenome , Metagenomics , Phylogeny , Hot Springs/microbiology , Archaea/genetics , Archaea/classification , China , Metagenomics/methods , Biodiversity , Hydrogen-Ion Concentration , Sulfur/metabolism , Temperature , Ecosystem
6.
Acta Pharmacol Sin ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811775

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 µM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 µM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.

7.
World J Stem Cells ; 16(5): 538-550, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817334

ABSTRACT

BACKGROUND: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM: To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS: Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS: In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION: We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.

8.
Poult Sci ; 103(7): 103838, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38772091

ABSTRACT

The current study aimed to investigate the pharmacokinetics of bromhexine hydrochloride in broilers after single intravenous (IV) and oral (PO) administration at 2.5 mg/kg body weight (BW). The trial adopted a randomized, parallel-controlled design, where 20 twelve-wk-old broilers were randomly assigned to either the PO or IV group. Blood samples were collected at predetermined time points, and plasma was further separated for analysis. The bromhexine hydrochloride concentrations in plasma samples were determined using an ultra-performance liquid chromatography-tandem quadrupole mass spectrometry (UPLC-MS/MS) method. Noncompartmental analysis (NCA) using Phoenix software was conducted to analyze the concentration versus time data of bromhexine hydrochloride in every chicken. Subsequently, the main pharmacokinetic parameters between the 2 groups were statistically analyzed using SPSS software. Results from NCA revealed that after oral administration at 2.5 mg/kg BW, bromhexine hydrochloride exhibited slow absorption, reaching an average peak concentration of 32.72 ng/mL at 1.78 h. However, incomplete absorption was observed, with an absolute bioavailability of only 20.06% ± 10.84%. Additionally, bromhexine hydrochloride displayed wide distribution, with a steady-state distribution volume (VSS) of 22.55 ± 13.45 L/kg, and slow elimination, with a clearance (Cl) of 1.52 ± 0.38 L/h/kg. Furthermore, gender effects were assessed on the pharmacokinetics of bromhexine hydrochloride in broilers, revealing better absorption in male broilers compared to females. This disparity may be attributed to the faster blood flow and richer blood volume typically found in male broilers.

9.
Article in English | MEDLINE | ID: mdl-38712385

ABSTRACT

Encapsulating a solid carbon source and zero-valent iron (ZVI) within a hydrogel can prevent direct contact with groundwater, thereby extending the lifespan of their released active substrates. It is currently unclear whether the solid carbon source and ZVI will mutually influence each other's active substrate release process and the corresponding denitrification patterns, necessitating further investigation. In this study a hydrogel encapsulating different weight ratios of micron-sized zero-valent iron (mZVI, as ZVI) and polyhydroxybutyrate (PHB, as a solid carbon source) was synthesized. The aim was to investigate the influence of PHB on the release of dissolved iron from mZVI and denitrification mechanism. Results indicated that PHB was consumed at a higher rate than mZVI, and more mZVI active sites could be exposed after PHB consumption. Meanwhile, PHB increased the porosity of the hydrogel, allowing more active sites of mZVI to be exposed and thus releasing more dissolved iron. Furthermore, PHB enhanced the rate of microbial corrosion of mZVI, which further increased the release of dissolved iron. Higher PHB content in the hydrogel reduced the oxidation of the released dissolved iron, resulting in a microbial community dominated by heterotrophic microorganisms. Conversely, lower PHB content led to significant Fe(II) oxidation and a considerable relative abundance of mixotrophic microorganisms in the microbial community. Microorganisms with iron reduction potential were also detected. This study provides theoretical support for the precise control of mixed nutrient denitrification based on hydrogel immobilization and lays the foundation for its further practical application in groundwater.

10.
Mitochondrial DNA B Resour ; 9(4): 506-511, 2024.
Article in English | MEDLINE | ID: mdl-38623176

ABSTRACT

Zanthoxylum ailanthoides is a deciduous tree, with important medicinal and economic values. The complete chloroplast genome sequence of Z. ailanthoides was assembled and the phylogenetic relationship to other species was inferred in this study. The chloroplast genome is 157,209 bp in length, including two inverted repeats of 26,408 bp, a large single-copy of 86,099 bp and a small single copy of 18,294 bp. Moreover, the chloroplast genome contains 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content of the chloroplast genome is 38.4%. The phylogenetic analysis indicated that Z. ailanthoides was grouped with a clade containing the species of Z. multijugum, Z. calcicola, Z. oxyphyllum, Z. stenophyllum, and the genus was closely related to Phellodendron. This study contributes to a better understanding of the phylogenetic relationships among Zanthoxylum species.

11.
Int J Biol Macromol ; 267(Pt 2): 131285, 2024 May.
Article in English | MEDLINE | ID: mdl-38583841

ABSTRACT

Thermal stability and iron saturation of lactoferrin (LF) are of great significance not only for the evaluation of the biological activities of LF but also for the optimization of the isolation and drying process parameters. Differential scanning calorimetry (DSC) is a well-established and efficient method for thermal stability and iron saturation detection in LF. However, multiple DSC measurements are typically performed sequentially, thus time-consuming and low throughput. Herein, we introduced the differential scanning fluorimetry (DSF) approach to overcome such limitations. The DSF can monitor LF thermal unfolding with a commonly available real-time PCR instrument and a fluorescent dye (SYPRO orange or Glomelt), and the measured melting temperature of LF is consistent with that determined by DSC. On the basis of that, a new quantification method was established for determination of iron saturation levels using the linear correlation of the degree of ion saturation of LF with DSF measurements. Such DSF method is simple, inexpensive, rapid (<15 min), and high throughput (>96 samples per experiment), and provides a valuable alternative tool for thermal stability detection of LF and other whey proteins.


Subject(s)
Fluorometry , Iron , Lactoferrin , Protein Stability , Lactoferrin/chemistry , Lactoferrin/analysis , Iron/chemistry , Fluorometry/methods , Calorimetry, Differential Scanning/methods , Temperature , High-Throughput Screening Assays/methods
12.
Biomaterials ; 308: 122568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615488

ABSTRACT

The crosstalk between breast cancer cells and tumor associated macrophages (TAMs) greatly contributes to tumor progression and immunosuppression. In this work, cat eye syndrome chromosome region candidate 2 (CECR2) is identified to overexpress in breast cancer patients, which can recognize v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) and activate nuclear factor κB (NF-κB) to release colony stimulating factor-1 (CSF-1). Pharmacological inhibition of CECR2 by the bromodomain competitor (Bromosporine, Bro) can downregulate CSF-1 to inhibit M2 type TAMs. To amplify the immunotherapeutic effect, a chimeric peptide-based and optical controlled CECR2 competitor (designated as N-PB) is constructed to enhance the nuclear targeted delivery of Bro and initiate an immunogenic cell death (ICD). In vivo results indicate a favorable breast cancer targeting ability and primary tumor suppression effect of N-PB under optical irradiation. Importantly, N-PB downregulates CSF-1 by competitive inhibition of CECR2 and NF-κB(RelA) interactions, thus inhibiting immunosuppressive M2-like TAMs while improving the antitumorigenic M1-like phenotype. Ultimately, the systemic anti-tumor immunity is activated to suppress the metastatic breast cancer in an optical controlled manner. This study provides a promising therapeutic target and reliable strategy for metastatic breast cancer treatment by interrupting immunosuppressive crosstalk between tumor cells and macrophages.


Subject(s)
Breast Neoplasms , Down-Regulation , Immunotherapy , Macrophage Colony-Stimulating Factor , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Female , Animals , Humans , Immunotherapy/methods , Down-Regulation/drug effects , Macrophage Colony-Stimulating Factor/metabolism , Cell Line, Tumor , Mice , Mice, Inbred BALB C , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Cell Nucleus/metabolism , Transcription Factor RelA/metabolism , Neoplasm Metastasis
13.
ACS Appl Mater Interfaces ; 16(17): 21709-21721, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651381

ABSTRACT

Antiangiogenic therapy is an effective way to disrupt nutrient supply and starve tumors, but it is restricted by poor efficacy and negative feedback-induced tumor relapse. In this study, a neuropilin-1 (NRP-1)-targeted nanomedicine (designated as FPPT@Axi) is reported for spatiotemporal tumor suppression by combining photodynamic therapy (PDT) with antiangiogenesis. In brief, FPPT@Axi is prepared by utilizing an NRP-1-targeting chimeric peptide (Fmoc-K(PpIX)-PEG8-TKPRR) to encapsulate the antiangiogenic drug Axitinib (Axi). Importantly, the NRP-1-mediated targeting property enables FPPT@Axi to selectively concentrate at vascular endothelial and breast cancer cells, facilitating the production of reactive oxygen species (ROS) in situ for specific vascular disruption and enhanced cell apoptosis under light stimulation. Moreover, the codelivered Axi can further inhibit vascular endothelial growth factor receptor (VEGFR) to impair the negative feedback of PDT-induced tumor neovascularization. Consequently, FPPT@Axi spatiotemporally restrains the tumor growth through blocking angiogenesis, destroying tumor vessels, and inducing tumor apoptosis. Such an NRP-1-mediated targeting codelivery system sheds light on constructing an appealing candidate with translational potential by using clinically approved PDT and chemotherapy.


Subject(s)
Angiogenesis Inhibitors , Neovascularization, Pathologic , Neuropilin-1 , Photochemotherapy , Neuropilin-1/metabolism , Humans , Animals , Mice , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Female , Axitinib/pharmacology , Axitinib/chemistry , Axitinib/therapeutic use , Nanomedicine , Apoptosis/drug effects , Human Umbilical Vein Endothelial Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Mice, Inbred BALB C , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Mice, Nude
14.
Sci Total Environ ; 929: 172477, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38621544

ABSTRACT

To study thermal behaviour during spontaneous combustion of an open-pit coal mine, mixed slag (coal, oil shale, and coal gangue) was taken as the research object. Laser thermal conductivity analyser and differential scanning calorimetry were used to test thermophysical parameters and heat release characteristics of the minerals. The parameters can be employed to calculate the apparent activation energy using the Arrhenius equation and evaluate the thermal behaviour of open-pit mixed slag. The results indicate that thermophysical parameters have stage characteristics. Thermal diffusivity and thermal conductivity of minerals, especially mixed slag, have a strong correlation with temperature. Heat flow of minerals exhibits five characteristic stages, and heat flow of the samples is consistent with the change in heating rate. During the heating process, thermal diffusivity and heat flow of the mixed slag are between those of a single mineral. Except for the mixed slag at 15 and 20 °C/min, the initial exothermic temperature of the other samples is mainly concentrated at 50-80 °C. Thermal energy release of the sample is mainly concentrated in the accelerated exothermic stage and rapid exothermic stage. Thermal energy release of mixed slag in rapid exothermic stage is always greater than that in accelerated exothermic stage, and the proportion of thermal energy release in these two stages exceeds 98 %. The apparent activation energy during the accelerated exothermic stage is lower, making it easier to release heat, and rapid exothermic stage is relatively high, which can readily lead to heat accumulation. Thermal analysis reveals that the thermal behaviour of mixed slag is significantly different from that of a single mineral. Its unique exothermic characteristics can provide a more accurate theoretical basis for the prevention and control of environmental pollution caused by slag spontaneous combustion.

15.
Medicine (Baltimore) ; 103(15): e37636, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608065

ABSTRACT

This study aimed to investigate the clinical predictors, including traditional Chinese medicine tongue characteristics and other clinical parameters for chemotherapy-induced myelosuppression (CIM), and then to develop a clinical prediction model and construct a nomogram. A total of 103 patients with lung cancer were prospectively enrolled in this study. All of them were scheduled to receive first-line chemotherapy regimens. Participants were randomly assigned to either the training group (n = 52) or the test group (n = 51). Tongue characteristics and clinical parameters were collected before the start of chemotherapy, and then the incidence of myelosuppression was assessed after treatment. We used univariate logistic regression analysis to identify the risk predictors for assessing the incidence of CIM. Moreover, we developed a predictive model and a nomogram using multivariate logistic regression analysis. Finally, we evaluated the predictive performance of the model by examining the area under the curve value of the receiver operating characteristic, calibration curve, and decision curve analysis. As a result, a total of 3 independent predictors were found to be associated with the CIM in multivariate regression analysis: the fat tongue (OR = 3.67), Karnofsky performance status score (OR = 0.11), and the number of high-toxic drugs in chemotherapy regimens (OR = 4.78). Then a model was constructed using these 3 predictors and it exhibited a robust predictive performance with an area under the curve of 0.82 and the consistent calibration curves. Besides, the decision curve analysis results suggested that applying this predictive model can result in more net clinical benefit for patients. We established a traditional Chinese medicine prediction model based on the tongue characteristics and clinical parameters, which could serve as a useful tool for assessing the risk of CIM.


Subject(s)
Antineoplastic Agents , Bone Marrow Diseases , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Models, Statistical , Prognosis , Tongue
16.
Clin Case Rep ; 12(4): e8569, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617072

ABSTRACT

In outpatient settings, Mycobacterium chelonae complex infection brought on by cosmetic injections are rather uncommon. We came across a case of infection brought on by a commercial stem cell injection.

17.
J Control Release ; 369: 531-544, 2024 May.
Article in English | MEDLINE | ID: mdl-38580138

ABSTRACT

Stimulator of the interferon genes (STING) pathway is appealing but challenging to potentiate the innate anti-tumor immunity. In this work, nuclear-targeted chimeric peptide nanorods (designated as PFPD) are constructed to amplify innate immunity through localized DNA damage and STING activation. Among which, the chimeric peptide (PpIX-FFVLKPKKKRKV) is fabricated with photosensitizer and nucleus targeting peptide sequence, which can self-assemble into nanorods and load STING agonist of DMXAA. The uniform nanosize distribution and good stability of PFPD improve the sequential targeting delivery of drugs towards tumor cells and nuclei. Under light irradiation, PFPD produce a large amount of reactive oxygen species (ROS) to destroy nuclear DNA in situ, and the released cytosolic DNA fragment will efficiently activate innate anti-tumor immunity in combination with STING agonist. In vitro and in vivo results indicate the superior ability of PFPD to activate natural killer cells and T cells, thus efficiently eradicating lung metastatic tumor without inducing unwanted side effects. This work provides a sophisticated strategy for localized activation of innate immunity for systemic tumor treatment, which may inspire the rational design of nanomedicine for tumor precision therapy.


Subject(s)
DNA Damage , Immunity, Innate , Membrane Proteins , Animals , Immunity, Innate/drug effects , Humans , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Cell Nucleus/metabolism , Mice, Inbred BALB C , Cell Line, Tumor , Nanotubes, Peptide/chemistry , Reactive Oxygen Species/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Female , Mice , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Peptides/administration & dosage , Peptides/chemistry
18.
Front Pharmacol ; 15: 1365802, 2024.
Article in English | MEDLINE | ID: mdl-38523633

ABSTRACT

Arachidonic acid (AA) is a main component of cell membrane lipids. AA is mainly metabolized by three enzymes: cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP450). Esterified AA is hydrolysed by phospholipase A2 into a free form that is further metabolized by COX, LOX and CYP450 to a wide range of bioactive mediators, including prostaglandins, lipoxins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. Increased mitochondrial oxidative stress is considered to be a central mechanism in the pathophysiology of the kidney. Along with increased oxidative stress, apoptosis, inflammation and tissue fibrosis drive the progressive loss of kidney function, affecting the glomerular filtration barrier and the tubulointerstitium. Recent studies have shown that AA and its active derivative eicosanoids play important roles in the regulation of physiological kidney function and the pathogenesis of kidney disease. These factors are potentially novel biomarkers, especially in the context of their involvement in inflammatory processes and oxidative stress. In this review, we introduce the three main metabolic pathways of AA and discuss the molecular mechanisms by which these pathways affect the progression of acute kidney injury (AKI), diabetic nephropathy (DN) and renal cell carcinoma (RCC). This review may provide new therapeutic targets for the identification of AKI to CKD continuum.

19.
Infect Drug Resist ; 17: 1073-1084, 2024.
Article in English | MEDLINE | ID: mdl-38525478

ABSTRACT

Purpose: To retrospectively analyse the different imaging manifestations of acquired immunodeficiency syndrome-associated hepatic Kaposi's sarcoma (AIDS-HKS) on CT, MRI, and Ultrasound. Patients and Methods: Eight patients were enrolled in the study. Laboratory tests of liver function were performed. The CT, MRI, and Ultrasound manifestations were reviewed by two radiologists and two sonographers, respectively. The distribution and imaging signs of AIDS-HKS were evaluated. Results: AIDS-HKS patients commonly presented multiple lesions, mainly distributed around the portal vein on CT, MRI, and Ultrasound. AIDS-HKS presented as ring enhancement in the arterial phase on contrast-enhanced CT and MRI scanning, and nodules gradually strengthen in the portal venous phase and the delayed phase. AIDS-HKS presented as intrahepatic bile duct dilatation and bile duct wall thickening around the lesion. Five patients (62.5%, 5/8) were followed up. After chemotherapy, the lesions were completely relieved (60.0%), or decreased (40.0%). Conclusion: AIDS-HKS presented as multiple nodular lesions with different imaging features. The combination of different imaging methods was helpful for the imaging diagnosis of AIDS-HKS.

20.
Science ; 383(6689): eadg4320, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38513038

ABSTRACT

Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.


Subject(s)
Bacterial Proteins , Evolution, Molecular , Peptide Synthases , Protein Engineering , Peptide Synthases/chemistry , Peptide Synthases/classification , Peptide Synthases/genetics , Phylogeny , Amino Acid Sequence/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...