Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Signal Transduct Target Ther ; 8(1): 355, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37718358

ABSTRACT

Substance use disorder remains a major challenge, with an enduring need to identify and evaluate new, translational targets for effective treatment. Here, we report the upregulation of Hypoxia-inducible factor-1α (HIF-1α) expression by roxadustat (Rox), a drug developed for renal anemia that inhibits HIF prolyl hydroxylase to prevent degradation of HIF-1α, administered either systemically or locally into selected brain regions, suppressed morphine (Mor)-induced conditioned place preference (CPP). A similar effect was observed with methamphetamine (METH). Moreover, Rox also inhibited the expression of both established and reinstated Mor-CPP and promoted the extinction of Mor-CPP. Additionally, the elevation of HIF-1α enhanced hepcidin/ferroportin 1 (FPN1)-mediated iron efflux and resulted in cellular iron deficiency, which led to the functional accumulation of the dopamine transporter (DAT) in plasma membranes due to iron deficiency-impaired ubiquitin degradation. Notably, iron-deficient mice generated via a low iron diet mimicked the effect of Rox on the prevention of Mor- or METH-CPP formation, without affecting other types of memory. These data reveal a novel mechanism for HIF-1α and iron involvement in substance use disorder, which may represent a potential novel therapeutic strategy for the treatment of drug abuse. The findings also repurpose Rox by suggesting a potential new indication for the treatment of substance use disorder.


Subject(s)
Iron Deficiencies , Iron , Animals , Mice , Up-Regulation , Brain , Homeostasis , Hypoxia
2.
J Control Release ; 348: 825-840, 2022 08.
Article in English | MEDLINE | ID: mdl-35752255

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with no currently approved treatment. The natural compound silybin (SLN) has versatile hepatoprotective efficacy with negligible adverse effects; however, poor absorption limits its clinical applications. Gut microbiota has been proposed to play a crucial role in the pathophysiology of NAFLD and targeted for disease control. Cyclodextrins, the cyclic oligosaccharides, were documented to have various health benefits with potential prebiotic properties. This study aimed to develop a silybin-2-hydroxypropyl-ß-cyclodextrin inclusion (SHßCD) to improve the therapeutic efficacy of SLN and elucidate the mechanisms of improvement. The results showed that SLN formed a 1:1 stoichiometric inclusion complex with HP-ß-CD. The solubility of SLN was increased by generating SHßCD, resulting in improved drug permeability and bioavailability. In high-fat diet (HFD)-fed hamsters, SHßCD modulated gut health by restoring the gut microbiota and intestinal integrity. SHßCD showed superior anti-lipid accumulation, antioxidant, and anti-inflammatory effects compared with SLN alone. Transcriptome analysis in the liver tissue implied that the improved inflammation and/or energy homeostasis was the potential mechanism. Therefore, SHßCD may be a promising alternative for the treatment of NAFLD, attributing to the dual functions of HßCD on drug absorption and gut microbial homeostasis.


Subject(s)
Cyclodextrins , Non-alcoholic Fatty Liver Disease , Animals , Cricetinae , Cyclodextrins/pharmacology , Diet, High-Fat/adverse effects , Homeostasis , Humans , Liver , Non-alcoholic Fatty Liver Disease/drug therapy , Prebiotics , Silybin
3.
Acta Pharmacol Sin ; 43(7): 1686-1698, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34811513

ABSTRACT

Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study,  we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.


Subject(s)
Methamphetamine , Animals , Corpus Striatum/metabolism , Homeostasis , Iron/metabolism , Methamphetamine/pharmacology , Mice , Rats , Reward
4.
Acta Pharm Sin B ; 10(9): 1769-1783, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33088695

ABSTRACT

Atherosclerosis (AS) is the leading cause of heart attacks, stroke, and peripheral vascular disease. Berberine (BBR), a botanical medicine, has diversified anti-atherosclerotic effects but with poor absorption. The aim of this study was to develop an effective BBR-entrapped nano-system for treating AS in high-fat diet (HFD)-fed Apoe (-/-) mice, and also explore the possible underlying mechanisms involved. Three d-α-tocopherol polyethylene glycol (PEG) succinate (TPGS) analogues with different PEG chain lengths were synthesized to formulate BBR-entrapped micelles. HFD-fed Apoe (-/-) mice were administered with optimized formula (BBR, 100 mg/kg/day) orally for 5 months. The artery plaque onset and related metabolic disorders were evaluated, and the underlying mechanisms were studied. Our data showed that, BT1500M increased BBR deposition in liver and adipose by 107.6% and 172.3%, respectively. In the Apoe (-/-) mice, BT1500M ameliorated HFD-induced hyperlipidemia and lipid accumulation in liver and adipose. BT1500M also suppressed HFD-induced chronic inflammation as evidenced by the reduced liver and adipose levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß); and decreased plasma level of TNF-α, IL-6, IL-1ß, interferon-γ (IFN-γ), monocyte chemotactic protein (MCP), and macrophage inflammatory factor (MIP). The mechanism study showed that BT1500M changed Ampk and Nf-κb gene expression, and interrupted a crosstalk process between adipocytes and macrophages. Further investigation proved that BT1500M decreased endothelial lesion and subsequent macrophage activation, cytokines release, as well as cholesteryl ester gathering in the aortic arch, resulting in ameliorated artery plaque build-up. Our results provide a practical strategy for treating AS using a BBR-entrapped nano-system.

5.
Brain Behav Immun ; 88: 640-653, 2020 08.
Article in English | MEDLINE | ID: mdl-32353516

ABSTRACT

Microglia-mediated neuroinflammation plays an important role in the progression of neurodegenerative diseases including Parkinson's disease (PD). Pleckstrin homology-like domain family A member 1 (PHLDA1) plays an important role in immunological regulation, particularly in the Toll-like receptor-mediated immune response. Here, we explored the potential roles of PHLDA1 in microglia-mediated inflammation and neuronal protection. We found that PHLDA1 expression was rapidly increased in response to inflammatory stimuli in microglia cells in vivo or in vitro. Knockdown of PHLDA1 using adeno-associated virus serotype (AAV) ameliorated MPTP-induced motor deficits and inhibited neuroinflammation in mice. In support of this observation in vivo, we found that LPS-induced proinflammatory gene expression, including TNF-α, IL-1ß, iNOS, and COX-2, was decreased in PHLDA1-deficient microglial cells. Mechanistic studies demonstrated that increased expression of PHLDA1, upon LPS stimulation in microglia, led to direct interaction with TRAF6 and enhanced its K63-linked ubiquitination-mediated NF-κB signaling activation. PHLDA1 deficiency interfered with TRAF6 K63-linked ubiquitination and inhibited microglial inflammatory responses. These findings reveal the first evidence that PHLDA1 is an important modulator of microglial function that is associated with microglia-mediated dopaminergic neurotoxicity. The data therefore provided the first evidence that PHLDA1 may be a potent modulator for neuroinflammation, and PHLDA1 may be a novel drug target for treatment of neuroinflammation-related diseases such as PD.


Subject(s)
Microglia , Animals , Inflammation , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Microglia/metabolism , NF-kappa B/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6 , Ubiquitination
6.
Huan Jing Ke Xue ; 39(10): 4783-4792, 2018 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-30229628

ABSTRACT

The growth and activity of sulfate-reducing prokaryotes (SRP) in oilfield environments could produce large amounts of H2S, leading to multifaceted problems, including oilfield souring and microbially-influenced corrosion, yet knowledge about the diversity and physiology of SRP therein was quite limited. To further understand the phenotypic characteristics of SRP residing in an offshore high-temperature oilfield at Bohai Bay, China, and to explore the potential methods for control of SRP-mediated problems, we isolated, using Hungate techniques, a thermotolerant, halotolerant SRP strain, designated BQ1, from the produced water of a high-temperature. We also presented the phenotypic features of BQ1, and investigated the efficacy of five biocides, or metabolic inhibitors, in suppressing the sulfidogenic activity of BQ1. Cells of BQ1 were motile, short rod-shaped, 1.2-2.5 µm in length and 0.5-0.8 µm in width. Although BQ1 shared 99% 16S rRNA gene sequence similarity with Desulfovibrio vulgaris Hildenborough, distinct phenotypic traits between them were observed. Isolated BQ1 could grow at 14-70℃(optimum at 30℃) and pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0%-10% NaCl. Isolated BQ1 utilized a wide range of carbon substrates, including sodium formate, sodium lactate, and acetate. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors, but not nitrate or nitrite. Sodium hypochlorite (600 mg·L-1), Benzyltrimethylammonium chloride (300 mg·L-1), or nitrate (800 mg·L-1) failed to inhibit H2S production by BQ1. By contrast, glutaraldehyde (50 mg·L-1), bronopol (30 mg·L-1), chlorine dioxide (50 mg·L-1), and nitrite (70 mg·L-1) inhibited H2S production by BQ1 for at least 30 d, indicating that these compounds may be suitable for the mitigation of microbial souring in this specific, high-temperature, offshore oilfield at Bohai Bay, China.


Subject(s)
Oil and Gas Fields/microbiology , Phylogeny , Sulfur-Reducing Bacteria/classification , Water Microbiology , Bacterial Typing Techniques , Bays , China , DNA, Bacterial , Hot Temperature , Oxidation-Reduction , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Sulfates , Sulfur-Reducing Bacteria/isolation & purification
7.
Psychopharmacology (Berl) ; 235(1): 233-244, 2018 01.
Article in English | MEDLINE | ID: mdl-29058041

ABSTRACT

RATIONALE: Major depressive disorder (MDD) is a highly prevalent illness that affects large populations across the world, and increasing evidence suggests that neuroinflammation and levels of brain-derived neurotrophic factor (BDNF) are closely related to depression. Dihydromyricetin (DHM) is a kind of flavonoid natural product that has been reported to display multiple pharmacological effects, including anti-inflammatory and anti-oxidative properties, and these may contribute to ameliorate MDD. OBJECTIVE: This study investigated the effect of DHM on depression-related phenotypes in various experimental animal models. METHODS: The antidepressant-like effect of DHM was validated via depression-related behavioral tests in naïve male C57BL/6 mice, as well as in the acute lipopolysaccharide-induced mouse model of depression. The chronic unpredicted mild stress (CUMS) mouse model of depression was also used to assess the rapid antidepressant-like effect of DHM by tail suspension test (TST), forced swimming test (FST), locomotor activity, and sucrose preference test (SPT). The expression of BDNF and inflammatory factors were determined through Western blotting and enzyme-linked immunosorbent assay, respectively. RESULTS: DHM reduced immobility time in the TST and FST both in mice and the acute LPS-induced mouse model of depression. Seven days of DHM treatment ameliorated depression-related behaviors induced by CUMS, whereas similar treatment with the typical antidepressant venlafaxine did not. DHM activated the ERK1/2-CREB pathway and increased glycogen synthase kinase-3 beta (GSK-3ß) phosphorylation at ser-9, with upregulation of BDNF expression, in both hippocampal tissues and cultured hippocampal cells. CONCLUSION: The present data indicate that DHM exerts a more rapid antidepressant-like effect than does a typical antidepressant, in association with enhancement of BDNF expression and inhibition of neuroinflammation.


Subject(s)
Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder/drug therapy , Flavonols/pharmacology , Locomotion/drug effects , Animals , Depressive Disorder/metabolism , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/metabolism , Hindlimb Suspension , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Swimming
8.
Water Sci Technol ; 73(5): 1098-103, 2016.
Article in English | MEDLINE | ID: mdl-26942532

ABSTRACT

Oil-water separation has recently become a worldwide challenge due to the frequent occurrence of oil spill accidents and increasing industrial oily wastewater. In this work, the multifunctional mesh films with underwater oleophobicity and certain bacteriostatic effects are prepared by layer-by-layer assembly of graphene oxide-silica coatings on stainless steel mesh. The mesh film exhibits excellent environmental stability under a series of harsh conditions. The new, facile and reusable separation system is proposed to achieve deep treatment of oily wastewater, and the oil collection rate can reach over 99%.


Subject(s)
Graphite/chemistry , Membranes, Artificial , Petroleum/analysis , Silicon Dioxide/chemistry , Wastewater/chemistry , Anti-Bacterial Agents , Industrial Waste , Stainless Steel , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry
9.
Water Sci Technol ; 71(11): 1611-9, 2015.
Article in English | MEDLINE | ID: mdl-26038925

ABSTRACT

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


Subject(s)
Cadmium/chemistry , Graphite/chemistry , Oxides/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...