Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(5): e2319644121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38271335

ABSTRACT

Exonuclease VII (ExoVII) is a ubiquitous bacterial nuclease. Encoded by the xseA and xseB genes, ExoVII participates in multiple nucleic acid-dependent pathways including the processing of multicopy single-stranded DNA and the repair of covalent DNA-protein crosslinks (DPCs). Although many biochemical properties of ExoVII have been defined, little is known about its structure/function relationships. Here, we use cryoelectron microscopy (cryoEM) to determine that Escherichia coli ExoVII comprises a highly elongated XseA4·XseB24 holo-complex. Each XseA subunit dimerizes through a central extended α-helical segment decorated by six XseB subunits and a C-terminal, domain-swapped ß-barrel element; two XseA2·XseB12 subcomplexes further associate using N-terminal OB (oligonucleotide/oligosaccharide-binding) folds and catalytic domains to form a spindle-shaped, catenated octaicosamer. The catalytic domains of XseA, which adopt a nuclease fold related to 3-dehydroquinate dehydratases, are sequestered in the center of the complex and accessible only through large pores formed between XseA tetramers. The architectural organization of ExoVII, combined with biochemical studies, indicate that substrate selectivity is controlled by steric access to its nuclease elements and that tetramer dissociation results from substrate DNA binding. Despite a lack of sequence and fold homology, the physical organization of ExoVII is reminiscent of Mre11·Rad50/SbcCD ATP (adenosine triphosphate)-dependent nucleases used in the repair of double-stranded DNA breaks, including those formed by DPCs through aberrant topoisomerase activity, suggesting that there may have been convergent evolutionary pressure to contend with such damage events.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Cryoelectron Microscopy , DNA , DNA Repair
2.
Mol Cell ; 74(1): 173-184.e4, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30797687

ABSTRACT

In cells, dedicated AAA+ ATPases deposit hexameric, ring-shaped helicases onto DNA to initiate chromosomal replication. To better understand the mechanisms by which helicase loading can occur, we used cryo-EM to determine sub-4-Å-resolution structures of the E. coli DnaB⋅DnaC helicase⋅loader complex with nucleotide in pre- and post-DNA engagement states. In the absence of DNA, six DnaC protomers latch onto and crack open a DnaB hexamer using an extended N-terminal domain, stabilizing this conformation through nucleotide-dependent ATPase interactions. Upon binding DNA, DnaC hydrolyzes ATP, allowing DnaB to isomerize into a topologically closed, pre-translocation state competent to bind primase. Our data show how DnaC opens the DnaB ring and represses the helicase prior to DNA binding and how DnaC ATPase activity is reciprocally regulated by DnaB and DNA. Comparative analyses reveal how the helicase loading mechanism of DnaC parallels and diverges from homologous AAA+ systems involved in DNA replication and transposition.


Subject(s)
DNA Replication , DNA, Bacterial/biosynthesis , DnaB Helicases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Adenosine Triphosphate/metabolism , Binding Sites , Cryoelectron Microscopy , DNA Primase/genetics , DNA Primase/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DnaB Helicases/chemistry , DnaB Helicases/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Hydrolysis , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...