Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 175: 116681, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705128

ABSTRACT

GCN1 is a highly conserved protein present widely across eukaryotes. As an upstream activator of protein kinase GCN2, GCN1 plays a pivotal role in integrated stress responses, such as amino acid starvation and oxidative stress. Through interaction with GCN2, GCN1 facilitates the activation of GCN2, thus initiating downstream signaling cascades in response to cellular stressors. In these contexts, the activation of GCN2 necessitates the presence and action of GCN1. Notably, GCN1 also operates as a ribosome collision sensor, contributing significantly to the translation quality control pathway. These discoveries offer valuable insights into cellular responses to internal stresses, vital for maintaining cellular homeostasis. Additionally, GCN1 exhibits the ability to regulate the cell cycle and suppress inflammation, among other processes, independently of GCN2. Our review outlines the structural characteristics and biological functions of GCN1, shedding light on its significant involvement in the onset and progression of various cancer and non-cancer diseases. Our work underscores the role of GCN1 in the context of drug therapeutic effects, hinting at its potential as a promising drug target. Furthermore, our work delves deep into the functional mechanisms of GCN1, promising innovative avenues for the diagnosis and treatment of diseases in the future. The exploration of GCN1's multifaceted roles not only enhances our understanding of its mechanisms but also paves the way for novel therapeutic interventions. The ongoing quest to unveil additional functions of GCN1 holds the promise of further enriching our comprehension of its mode of action.

2.
Sci Adv ; 10(21): eadm9311, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787950

ABSTRACT

Palladium (Pd) and gold (Au) are the most often used precious metals (PMs) in industrial catalysis and electronics. Green recycling of Pd and Au is crucial and difficult. Here, we report a peroxydisulfate (PDS)-based advanced oxidation process (AOPs) for selectively recovering Pd and Au from spent catalysts. The PDS/NaCl photochemical system achieves complete dissolution of Pd and Au. By introducing Fe(II), the PDS/FeCl2·4H2O solution functioned as Fenton-like system, enhancing the leaching efficiency without xenon (Xe) lamp irradiation. Electron paramagnetic resonance (EPR), 18O isotope tracing experiments, and density functional theory calculations revealed that the reactive oxidation species of SO4·-, ·OH, and Fe(IV)═O were responsible for the oxidative dissolution process. Lixiviant leaching and one-step electrodeposition recovered high-purity Pd and Au. Strong acids, poisonous cyanide, and volatile organic solvents were not used during the whole recovery, which enables an efficient and sustainable precious metal recovery approach and encourage AOP technology for secondary resource recycling.

3.
PLoS One ; 19(2): e0299138, 2024.
Article in English | MEDLINE | ID: mdl-38408075

ABSTRACT

BACKGROUND: Cuproptosis is a novel copper-dependent mode of cell death that has recently been discovered. The relationship between Cuproptosis-related ncRNAs and breast cancer subtypes, however, remains to be studied. METHODS: The aim of this study was to construct a breast cancer subtype prediction model associated with Cuproptosis. This model could be used to determine the subtype of breast cancer patients. To achieve this aim, 21 Cuproptosis-related genes were obtained from published articles and correlation analysis was performed with ncRNAs differentially expressed in breast cancer. Random forest algorithms were subsequently utilized to select important ncRNAs and build breast cancer subtype prediction models. RESULTS: A total of 94 ncRNAs significantly associated with Cuproptosis were obtained and the top five essential features were chosen to build a predictive model. These five biomarkers were differentially expressed in the five breast cancer subtypes and were closely associated with immune infiltration, RNA modification, and angiogenesis. CONCLUSION: The random forest model constructed based on Cuproptosis-related ncRNAs was able to accurately predict breast cancer subtypes, providing a new direction for the study of clinical therapeutic targets.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Cell Death , Copper , RNA, Untranslated/genetics , Apoptosis
4.
Hum Cell ; 37(1): 167-180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37995050

ABSTRACT

LINC00941, also known as lncRNA-MUF, is an intergenic non-coding RNA located on chromosome 12p11.21. It actively participates in a complex competing endogenous RNA network, regulating the expression of microRNA and its downstream proteins. Through transcriptional and post-transcriptional regulation, LINC00941 plays a vital role in multiple signaling pathways, influencing cell behaviors such as tumor cell proliferation, epithelial-mesenchymal transition, migration, and invasion. Noteworthy is its consistently high expression in various tumor types, closely correlating with clinicopathological features and cancer prognoses. Elevated LINC00941 levels are associated with adverse clinical outcomes, including increased tumor size, extensive lymphatic metastasis, and distant metastasis, leading to poorer survival rates across different cancers. Additionally, LINC00941 and its associated genes are linked to various targeted drugs available in the market. In this comprehensive review, we systematically summarize existing studies, detailing LINC00941's differential expression, clinicopathological and prognostic implications, regulatory mechanisms, and associated therapeutic drugs. Our analysis includes relevant charts and incorporates bioinformatics analyses to verify LINC00941's differential expression in pan-cancer and explore potential transcriptional regulation patterns of downstream targets. This work not only establishes a robust data foundation but also guides future research directions. Given its potential as a significant cancer biomarker and therapeutic target, further investigation into LINC00941's differential expression and regulatory mechanisms is essential.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , Lymphatic Metastasis , Signal Transduction , RNA, Messenger/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
Sci Rep ; 13(1): 16268, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758759

ABSTRACT

Disulfidptosis is a newly discovered mode of cell death. However, its relationship with breast cancer subtypes remains unclear. In this study, we aimed to construct a disulfidptosis-associated breast cancer subtype prediction model. We obtained 19 disulfidptosis-related genes from published articles and performed correlation analysis with lncRNAs differentially expressed in breast cancer. We then used the random forest algorithm to select important lncRNAs and establish a breast cancer subtype prediction model. We identified 132 lncRNAs significantly associated with disulfidptosis (FDR < 0.01, |R|> 0.15) and selected the first four important lncRNAs to build a prediction model (training set AUC = 0.992). The model accurately predicted breast cancer subtypes (test set AUC = 0.842). Among the key lncRNAs, LINC02188 had the highest expression in the Basal subtype, while LINC01488 and GATA3-AS1 had the lowest expression in Basal. In the Her2 subtype, LINC00511 had the highest expression level compared to other key lncRNAs. GATA3-AS1 had the highest expression in LumA and LumB subtypes, while LINC00511 had the lowest expression in these subtypes. In the Normal subtype, GATA3-AS1 had the highest expression level compared to other key lncRNAs. Our study also found that key lncRNAs were closely related to RNA methylation modification and angiogenesis (FDR < 0.05, |R|> 0.1), as well as immune infiltrating cells (P.adj < 0.01, |R|> 0.1). Our random forest model based on disulfidptosis-related lncRNAs can accurately predict breast cancer subtypes and provide a new direction for research on clinical therapeutic targets for breast cancer.


Subject(s)
Myrtaceae , Neoplasms , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Cell Death , Oncogenes , Protein Processing, Post-Translational
6.
Front Oncol ; 12: 1039366, 2022.
Article in English | MEDLINE | ID: mdl-36620587

ABSTRACT

LINC00324 is a 2082 bp intergenic noncoding RNA. Aberrant expression of LINC00324 was associated with the risk of 11 tumors and was closely associated with clinicopathological features and prognostic levels of 7 tumors. LINC00324 can sponge multiple miRNAs to form complex ceRNA networks, and can also recruit transcription factors and bind RNA-binding protein HuR, thereby regulating the expression of a number of downstream protein-coding genes. LINC00324 is involved in 4 signaling pathways, including the PI3K/AKT signaling pathway, cell cycle regulatory pathway, Notch signaling pathway, and Jak/STAT3 signaling pathway. High expression of LINC00324 was associated with larger tumors, a higher degree of metastasis, a higher TNM stage and clinical stage, and shorter OS. Currently, four downstream genes in the LINC00324 network have targeted drugs. In this review, we summarize the molecular mechanisms and clinical value of LINC00324 in tumors and discuss future directions and challenges for LINC00324 research.

7.
Environ Sci Technol ; 54(16): 10370-10379, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32673480

ABSTRACT

The NdFeB permanent magnet is a critical material in digital electronics and clean energy industry. Traditional recovery processes based on the solvent extraction technique would consume high energy and large amounts of chemicals as well as resulting in abundant secondary organic wastes. In this work, a green process using deep eutectic solvents (DESs) in the selective leaching technology was designed to recover NdFeB permanent magnets. Nine kinds of DESs composed of guanidine were prepared and screened as the leachants. The guanidine hydrochloride-lactic acid (GUC-LAC) combined DES achieved the highest separation factor (>1300) between neodymium and iron through simple dissolution of their corresponding oxide mixture. The mass concentration of Nd dissolved in the GUC-LAC DES could reach 6.7 × 104 ppm. The viscosity of this type of DES at 50 °C was 36 cP, which was comparable to many common organic solvents. In a practical recovery of roasted magnet powders, the Nd2O3 product with 99% purity was facilely obtained with only one dissolution step, followed by a stripping process with oxalic acid. Even after 3 cycles, the GUC-LAC DES kept the same dissolution property and chemical stability. With such superior performances in selective leaching of rare earth elements from transition metals, the GUC-LAC DES is greatly promising in the rare earth element recovery field.


Subject(s)
Magnets , Metals, Rare Earth , Iron , Neodymium , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...