Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
World J Gastroenterol ; 30(10): 1295-1312, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38596493

ABSTRACT

Hepatitis B virus (HBV) reactivation is a clinically significant challenge in disease management. This review explores the immunological mechanisms underlying HBV reactivation, emphasizing disease progression and management. It delves into host immune responses and reactivation's delicate balance, spanning innate and adaptive immunity. Viral factors' disruption of this balance, as are interactions between viral antigens, immune cells, cytokine networks, and immune checkpoint pathways, are examined. Notably, the roles of T cells, natural killer cells, and antigen-presenting cells are discussed, highlighting their influence on disease progression. HBV reactivation's impact on disease severity, hepatic flares, liver fibrosis progression, and hepatocellular carcinoma is detailed. Management strategies, including anti-viral and immunomodulatory approaches, are critically analyzed. The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation. In conclusion, this comprehensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation. With a dedicated focus on understanding its implications for disease progression and the prospects of efficient management strategies, this article contributes significantly to the knowledge base. The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches, ultimately enhancing disease management and elevating patient outcomes. The dynamic landscape of management strategies is critically scrutinized, spanning anti-viral and immunomodulatory approaches. The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B virus , Hepatitis B/drug therapy , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Liver Neoplasms/drug therapy , Antiviral Agents/pharmacology , Disease Progression , Virus Activation , Hepatitis B Surface Antigens , Hepatitis B, Chronic/drug therapy
2.
Biochem Pharmacol ; 221: 116048, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346542

ABSTRACT

Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.


Subject(s)
Neoplasms , Protein-Arginine N-Methyltransferases , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Epigenesis, Genetic , Phosphatidylinositol 3-Kinases/metabolism , Neoplasms/drug therapy , Transcription Factors/metabolism , Immunotherapy , Arginine/metabolism , Drug Resistance
3.
J Diabetes Complications ; 38(2): 108688, 2024 02.
Article in English | MEDLINE | ID: mdl-38281457

ABSTRACT

Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia and systemic complications, including hepatic dysfunction, significantly contributing to disease progression and morbidity. This article reviews recent advances in gene-based therapeutic strategies targeting hepatic complications in diabetes, offering a promising approach for precision medicine by addressing underlying molecular mechanisms. Traditional treatments for hepatic complications in diabetes often manage symptoms rather than molecular causes, showing limited efficacy. Gene-based therapies are poised to correct dysfunctional pathways and restore hepatic function. Fundamental gene therapy approaches include gene silencing via small interfering RNAs (siRNAs) to target hepatic glucose production, lipid metabolism, and inflammation. Viral vectors can restore insulin sensitivity and reduce oxidative stress in diabetic livers. Genome editing, especially CRISPR-Cas9, allows the precise modification of disease-associated genes, offering immense potential for hepatic complication treatment. Strategies using CRISPR-Cas9 to enhance insulin receptor expression and modulate aberrant lipid regulatory genes are explored. Safety challenges in gene-based therapies, such as off-target effects and immune responses, are discussed. Advances in nanoparticle-based delivery systems and targeted gene editing techniques offer solutions to enhance specificity and minimize adverse effects. In conclusion, gene-based therapeutic approaches are a transformative direction in managing hepatic complications in diabetes. Further research is needed to optimize efficacy, safety, and long-term outcomes. Nevertheless, these innovative strategies promise to improve the lives of individuals with diabetes by addressing hepatic dysfunction's genetic root causes.


Subject(s)
CRISPR-Cas Systems , Diabetes Mellitus , Humans , Gene Editing/methods , Diabetes Mellitus/genetics , Insulin/genetics
4.
Biomed Pharmacother ; 169: 115821, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37952355

ABSTRACT

Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, have emerged as critical mediators in the communication between the human microbiota and its host. As the first responder to the inflammatory site, neutrophils play an important role in protecting the host against bacterial infections. Recent investigations revealed that SCFAs generated from microbiota influence various neutrophil activities, including activation, migration, and generation of mediators of inflammatory processes. SCFAs have also been demonstrated to exhibit potential therapeutic benefits in a variety of disorders related to neutrophil dysfunction, including inflammatory bowel disease, viral infectious disorders, and cancer. This study aims to examine the molecular processes behind the complicated link between SCFAs and neutrophils, as well as their influence on neutrophil-driven inflammatory disorders. In addition, we will also provide an in-depth review of current research on the diagnostic and therapeutic value of SCFAs as possible biomarkers for neutrophil-related diseases.


Subject(s)
Microbiota , Neutrophils , Humans , Fatty Acids, Volatile/pharmacology , Butyrates/pharmacology , Biomarkers
5.
Asian Pac J Cancer Prev ; 13(7): 3223-8, 2012.
Article in English | MEDLINE | ID: mdl-22994738

ABSTRACT

HMGN5 is a typical member of the HMGN (high mobility group nucleosome-binding protein) family which may function as a nucleosomal binding and transcriptional activating protein. Overexpression of HMGN5 has been observed in several human tumors but its role in tumorigenesis has not been fully clarified. To investigate its significance for human lung cancer progression, we successfully constructed a shRNA expression lentiviral vector in which sense and antisense sequences targeting the human HMGN5 were linked with a 9-nucleotide loop. Inhibitory effects of siRNA on endogenous HMGN5 gene expression and protein synthesis were demonstrated via real-time RT-PCR and western blotting. We found HMGN5 silencing to significantly inhibit A549 and H1299 cell proliferation assessed by MTT, BrdU incorporation and colony formation assays. Furthermore, flow cytometry analysis showed that specific knockdown of HMGN5 slowed down the cell cycle at the G0/G1 phase and decreased the populations of A549 and H1299 cells at the S and G2/M phases. Taken together, these results suggest that HMGN5 is directly involved in regulation cell proliferation in A549 and H1299 cells by influencing signaling pathways involved in cell cycle progression. Thus, our finding suggests that targeting HMGN5 may be an effective strategy for human lung cancer treatment.


Subject(s)
Cell Cycle Checkpoints/genetics , Cell Cycle/genetics , HMGN Proteins/deficiency , HMGN Proteins/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Trans-Activators/deficiency , Trans-Activators/genetics , Cell Line, Tumor , Cell Proliferation , Disease Progression , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , HMGN Proteins/biosynthesis , Humans , RNA Interference , RNA, Small Interfering/genetics , Trans-Activators/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...