Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2402356, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647401

ABSTRACT

The proton exchange membrane water electrolyzer (PEMWE), crucial for green hydrogen production, is challenged by the scarcity and high cost of iridium-based materials. Cobalt oxides, as ideal electrocatalysts for oxygen evolution reaction (OER), have not been extensively applied in PEMWE, due to extremely high voltage and poor stability at large current density, caused by complicated structural variations of cobalt compounds during the OER process. Thus, the authors sought to introduce chromium into a cobalt spinel (Co3O4) catalyst to regulate the electronic structure of cobalt, exhibiting a higher oxidation state and increased Co-O covalency with a stable structure. In-depth operando characterizations and theoretical calculations revealed that the activated Co-O covalency and adaptable redox behavior are crucial for facilitating its OER activity. Both turnover frequency and mass activity of Cr-doped Co3O4 (CoCr) at 1.67 V (vs RHE) increased by over eight times than those of as-synthesized Co3O4. The obtained CoCr catalyst achieved 1500 mA cm-2 at 2.17 V and exhibited notable durability over extended operation periods - over 100 h at 500 mA cm-2 and 500 h at 100 mA cm-2, demonstrating promising application in the PEMWE industry.

2.
Nat Commun ; 14(1): 4882, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573371

ABSTRACT

Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C3 species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an "atomic size misfit" strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FEpropanol) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FEpropanol above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm2 electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C-C coupling ability, thus promoting the CO-to-n-propanol conversion.

3.
Environ Sci Pollut Res Int ; 30(29): 74398-74408, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209337

ABSTRACT

Rock burst is the main geological hazard in deep underground engineering. For the prediction of the intensity of rock burst, a model for prediction of rock burst intensity on the basis of multi-source evidence weight and error-eliminating theory was established. Four indexes including the ratio of rock's compressive-tensile strength [Formula: see text], the stress coefficient of rock [Formula: see text], the elastic energy index of rock Wet, and integrality coefficient Kv were chosen as the prediction variables of rock burst; the index weights are calculated by different weighting methods and fused with evidence theory to determine the final weight of each index. According to the theory of error-eliminating, taking "no rock burst" (I in classification standards of rock burst intensity) as the objective and using the error function to process 18 sets of typical rock burst data and the weight of evidence fusion as the normalized index limit loss value, a model for prediction of rock burst intensity was built. It is verified by the actual situation and three other models. Finally, the model has been applied to rock burst prediction of Zhongnanshan tunnel ventilation shaft. The results show that evidence theory fuses multi-source index weights and improves the method of determining index weights. The index value is processed by error-eliminating theory, and the limit value problem of index value normalization is optimized. The predicted results of the proposed model are consistent with the situation of Zhongnanshan tunnel. It improves the objectivity of the rock burst prediction process and provides a research idea for rock burst intensity prediction index.


Subject(s)
Engineering , Tensile Strength , Pressure
4.
Exp Neurol ; 347: 113918, 2022 01.
Article in English | MEDLINE | ID: mdl-34748756

ABSTRACT

In temporal lobe epilepsy (TLE), abnormal axon guidance and synapse formation lead to sprouting of mossy fibers in the hippocampus, which is one of the most consistent pathological findings in patients and animal models with TLE. Glypican 4 (Gpc4) belongs to the heparan sulfate proteoglycan family, which play an important role in axon guidance and excitatory synapse formation. However, the role of Gpc4 in the development of mossy fibers sprouting (MFS) and its underlying mechanism remain unknown. Using a pilocarpine-induced mice model of epilepsy, we showed that Gpc4 expression was significantly increased in the stratum granulosum of the dentate gyrus at 1 week after status epilepticus (SE). Using Gpc4 overexpression or Gpc4 shRNA lentivirus to regulate the Gpc4 level in the dentate gyrus, increased or decreased levels of netrin-1, SynI, PSD-95, and Timm score were observed in the dentate gyrus, indicating a crucial role of Gpc4 in modulating the development of functional MFS. The observed effects of Gpc4 on MFS were significantly antagonized when mice were treated with L-leucine or rapamycin, an agonist or antagonist of the mammalian target of rapamycin (mTOR) signal, respectively, demonstrating that mTOR pathway is an essential requirement for Gpc4-regulated MFS. Additionally, the attenuated spontaneous recurrent seizures (SRSs) were observed during chronic stage of the disease by suppressing the Gpc4 expression after SE. Altogether, our findings demonstrate a novel control of neuronal Gpc4 on the development of MFS through the mTOR pathway after pilocarpine-induced SE. Our results also strongly suggest that Gpc4 may serve as a promising target for antiepileptic studies.


Subject(s)
Glypicans/biosynthesis , Mossy Fibers, Hippocampal/metabolism , Pilocarpine/toxicity , Signal Transduction/physiology , Status Epilepticus/metabolism , TOR Serine-Threonine Kinases/biosynthesis , Animals , Cells, Cultured , Glypicans/antagonists & inhibitors , Male , Mice , Mossy Fibers, Hippocampal/drug effects , Muscarinic Agonists/toxicity , Signal Transduction/drug effects , Status Epilepticus/chemically induced , TOR Serine-Threonine Kinases/antagonists & inhibitors
5.
Bioresour Technol ; 305: 123085, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32126481

ABSTRACT

The raw material of resin, Bisphenol A (BPA), is an endocrine-disrupting compound that can be continuously released into the environment and directly harms health. In this study, luffa sponge was used as the raw material to prepare magnetic carbon chemicals for laccase immobilization and BPA degradation. The MLC-1 was synthesized by one-step carbonization-magnetization method, which showed good magnetic properties and a strong load capacity for laccase. Compared with free laccase, Laccase@MLC-1 showed stronger thermal stability, better acid-tolerate performance and reusability. Moreover, Laccase@MLC-1 showed higher BPA degradation efficiency than free laccase. 100 mg/L of BPA can be completely removed by Laccase@MLC-1 in 4 h, while only 62.70% of BPA was removed by the same amount of free laccase. By improving reuse strategies, a complete BPA degradation ratio was obtained in each reoperation process. All results proved that Laccase@MLC-1 might be a suitable biocatalyst candidate for BPA removal.

SELECTION OF CITATIONS
SEARCH DETAIL
...