Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 754
Filter
1.
Eur J Pharmacol ; 983: 176968, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233039

ABSTRACT

Compound 5p is a 4ß-N-substituted podophyllotoxin derivative, which exhibited potent activity toward drug-resistant K562/A02 cells and decreased MDR-1 mRNA expression. Here, we further investigated its detail mechanism and tested its antitumor activity. 5p exerted catalytic inhibition of topoisomerase IIα, and didn't show the inhibitor of topoisomerase I. 5p exhibited the inhibitory effect on microtubule polymerization. 5p showed potent anti-proliferation against breast cancer, oral squamous carcinoma, and their drug-resistant cell lines, with resistance index of 0.61 and 0.86, respectively. 5p downregulated the expression levels of P-gp in KBV200 cells and BCRP in MCF7/ADR cells in dose-dependent manner. Moreover, 5p induced KB and KBV200 cells arrest at G2/M phase by up-regulating the expression of γ-H2AX, p-Histone H3 and cyclin B1. 5p induced apoptosis and pyroptosis by increased the expression levels of cleaved-PARP, cleaved-caspase3, N-GSDME as well as LDH release in KB and KBV200 cells. In addition, 5p efficiently impaired tumor growth in KB and KBV200 xenograft mice. Conclusively, this work elucidated the dual inhibitor of topoisomerase II and microtubule of 5p and its mechanism of overcoming the multidrug resistance, indicating that 5p exerts the antitumor potentiality.

2.
Langmuir ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39282865

ABSTRACT

The production of sludge biochar (SBC) from residual sludge offers a solution to the challenges associated with sludge disposal and facilitates the reutilization of resources. In the present research, a bimetallic-modified sludge biochar, designated as FeCu-SBC, was synthesized by varying the doping ratios of FeSO4 and CuSO4. This material was intended for the effective degradation of tetracycline (TC) in aqueous environments via the activation of peroxydisulfate. The FeCu2-SBC (90% degradation rate) composite, synthesized through the incorporation of Fe and Cu in a 1:2 ratio with SBC, exhibited a degradation rate of TC, which was 2.7 times higher than that of SBC (32.85% degradation rate) and 1.8 times higher than that of FeCu (50% degradation rate). Research examining the mechanisms involved revealed that FeCu underwent degradation solely through the radical (•OH) pathway, whereas FeCu2-SBC was subject to degradation through both radical (SO4•-) and nonradical (1O2) pathways. This phenomenon was attributed to the distinct π-π, C═O, and defect structures in FeCu2-SBC compared to FeCu, which facilitated the activation process leading to the production of reactive species. This investigation presented a cost-effective approach for producing bimetallic-modified sludge biochar, offering perspectives on determining the crucial elements influencing the streamlined TC degradation pathway.

3.
Int J Antimicrob Agents ; : 107335, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245325

ABSTRACT

OBJECTIVES: This study aimed to assess the incidence and risk factors of subsequent CRE infection among rectal carriers, and their association with geographic region and age. METHODS: A meta-analysis of studies investigating incidence and/or risk factors of subsequent CRE infection among rectal carriers was conducted, with subgroup analyses by geographic region and age. PubMed, Embase, Web of Science, and Cochrane Library were searched (published from inception to January 31st, 2024). This study is registered with PROSPERO, CRD42023444420. RESULTS: Of 4459 studies identified, 24 studies with 8188 CRE rectal carriers were included. The pooled incidence of subsequent CRE infection was 20.6% (95% CI 15.9-25.8). The highest incidence was seen in America (23.6%, 95% CI 14.2-34.5), followed by Europe (20.9%, 95% CI 12.5-30.8) and Asia (19.8%, 95% CI 12.7-27.9). Children had a greater incidence (26.7%, 95% CI 21.3-32.3) than adults (19.8%, 95% CI 14.9-25.2). Fourteen factors were associated with subsequent CRE infection. In Asia, the most notable risk factor was gastritis (OR 4.95 95% CI 1.87-13.11). In Europe, admission to ICU was prominent (OR 2.76 95% CI 1.14-6.65). In America, use of a urinary foley catheter (OR 4.33 95% CI 1.06-17.70) was dominant. Admission to ICU was most notable in adult (OR 3.01 95% CI 1.80-5.02), while mechanical ventilation was shown the greatest significance in children (OR 15.61 95% CI 4.39-55.47). CONCLUSIONS: Risk of subsequent CRE infection among rectal carriers was critical. Identifying the risk factors for subsequent infection could help developing more potent prevention and control measures to reduce CRE infection.

4.
Opt Lett ; 49(17): 4835-4838, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39207976

ABSTRACT

A key challenge in realizing ultrahigh-resolution displays is the efficient preparation of ultrasmall-sized (USS) light-emitting diodes (LEDs). Today, GaN-based LEDs are mainly prepared through dry etching processes. However, it is difficult to achieve efficient and controllable etching of USS LED with high aspect ratios, and LED sidewalls will appear after etching, which will have a negative impact on the device itself. Herein, a method for preparing USS LED based on GaN epitaxial wafers is reported (on two types of wafers, i.e., with p-GaN fully activated and unactivated). F-ions are injected into the intentionally exposed areas on the two types of wafers to achieve device isolation. The area under the micro-/nano-sized protective masks (0.5, 0.8, 1, 3, 5, 7, 9, and 10 µm wide Ni/Au stripes) are the LED lighting areas. The LED on the p-GaN unactivated wafer (UAW) requires further activation. The Ni/Au mask not only serves as the p-electrode of LED but also Ni as a hydrogen (H) removing metal covering the surface of p-GaN UAW that can desorb H from a Mg element in the film at relatively low temperatures, thereby achieving the selective activation of LED lighting areas. Optoelectronic characterization shows that micro-/nano-sized LED arrays with individual-pixel control were successfully fabricated on the two types of wafers. It is expected that the demonstrated method will provide a new way toward realizing ultrahigh-resolution displays. Analyzing the changes in the current flowing through LED (before and after selective activation) on the F-injected p-GaN UAW, it is believed that depositing H removing metal on p-GaN UAW could possibly realize the device array through the selective activation only (i.e., without the need for ion implantation), offering a completely new insight.

5.
Lancet Planet Health ; 8(7): e463-e475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969474

ABSTRACT

BACKGROUND: Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS: In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS: 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION: The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING: The Key Research and Development Program of China.


Subject(s)
Henipavirus Infections , Nipah Virus , Nipah Virus/physiology , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Humans , Animals , Chiroptera/virology , Asia, Southeastern/epidemiology , Phylogeny , Zoonoses/epidemiology , Zoonoses/virology
6.
Water Res ; 262: 122132, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39053208

ABSTRACT

Conductive materials, such as magnetite, are recognized for their ability to enhance electron transfer and stimulate microbial metabolic activities. This study aimed to elucidate the metabolic potential and species interactions of dominant microbial species within complex communities influenced by magnetite. It indicated that the optimal dosage of magnetite at 4.5 mg/cm², would significantly improve denitrification efficiency and then reduce the time for removing 50 mg/L nitrate by 24.33 %. This enhancement was attributed to the reduced charge transfer resistance and the promoted formation of extracellular polymeric substances (EPS) facilitated by magnetite. Metagenomic analysis revealed that magnetite addition mitigated the competition among truncated denitrifiers for downstream nitrogen species, diminished the contribution of bacteria with complete nitrogen metabolism pathways to denitrification, and fostered a transition towards co-denitrification through interspecies cooperation, consequently leading to decreased nitrite accumulation and increased tolerance to nitrate shock loads. Furthermore, an in-depth study on a key species, Geobacter anodireducens JN93 within the bioelectrochemical system revealed that while magnetite with varying Fe(II) and Fe(III) ratios improved denitrification performance, the metabolic potential of Geobacter sp. varied for different nitrogen metabolism pathways. Collectively, this research provides insights into the microecological effects of magnetite on denitrifying consortia by shifting interspecific interactions via enhanced electron transfer.


Subject(s)
Denitrification , Ferrosoferric Oxide , Ferrosoferric Oxide/metabolism , Geobacter/metabolism , Nitrates/metabolism , Microbial Consortia , Bioreactors/microbiology
7.
ACS Appl Mater Interfaces ; 16(31): 41194-41201, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39066697

ABSTRACT

Achieving a high piezoelectric response and excellent stability is essential for practical applications of ferroelectric materials. Herein, large piezoelectricity of d33 = 167 pC/N and kt = 0.52 is found in a K0.7Na0.3NbO3 lead-free ferroelectric single crystal without poling, which is comparable to the artificially poled KNN crystals. The large piezoelectricity is maintained up to 196 °C, showing excellent thermal stability. It was demonstrated that the high piezoelectricity is associated with strong self-polarization in the crystals. The strong internal stress formed during crystal growth gives a preferred spontaneous polarization orientation, resulting in a net macro total polarization. In addition, the internal stress also pins domain wall motions and provides a "restoring force" for the domain switching. This work provides a strategy for designing and optimizing the piezoelectric performance of ferroelectric materials.

8.
Front Plant Sci ; 15: 1390603, 2024.
Article in English | MEDLINE | ID: mdl-38911983

ABSTRACT

Rice, a critical staple on a global scale, faces escalating challenges in yield preservation due to the rising prevalence of abiotic and biotic stressors, exacerbated by frequent climatic fluctuations in recent years. Moreover, the scorching climate prevalent in the rice-growing regions of South China poses obstacles to the cultivation of good-quality, heavy-grain varieties. Addressing this dilemma requires the development of resilient varieties capable of withstanding multiple stress factors. To achieve this objective, our study employed the broad-spectrum blast-resistant line Digu, the brown planthopper (BPH)-resistant line ASD7, and the heavy-grain backbone restorer lines Fuhui838 (FH838) and Shuhui527 (SH527) as parental materials for hybridization and multiple crossings. The incorporation of molecular markers facilitated the rapid pyramiding of six target genes (Pi5, Pita, Pid2, Pid3, Bph2, and Wxb ). Through a comprehensive evaluation encompassing blast resistance, BPH resistance, cold tolerance, grain appearance, and quality, alongside agronomic trait selection, a promising restorer line, Guihui5501 (GH5501), was successfully developed. It demonstrated broad-spectrum resistance to blast, exhibiting a resistance frequency of 77.33% against 75 artificially inoculated isolates, moderate resistance to BPH (3.78 grade), strong cold tolerance during the seedling stage (1.80 grade), and characteristics of heavy grains (1,000-grain weight reaching 35.64 g) with good grain quality. The primary rice quality parameters for GH5501, with the exception of alkali spreading value, either met or exceeded the second-grade national standard for premium edible rice varieties, signifying a significant advancement in the production of good-quality heavy-grain varieties in the southern rice-growing regions. Utilizing GH5501, a hybrid combination named Nayou5501, characterized by high yield, good quality, and resistance to multiple stresses, was bred and received approval as a rice variety in Guangxi in 2021. Furthermore, genomic analysis with gene chips revealed that GH5501 possessed an additional 20 exceptional alleles, such as NRT1.1B for efficient nitrogen utilization, SKC1 for salt tolerance, and STV11 for resistance to rice stripe virus. Consequently, the restorer line GH5501 could serve as a valuable resource for the subsequent breeding of high-yielding, good-quality, and stress-tolerant hybrid rice varieties.

9.
J Transl Med ; 22(1): 544, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844980

ABSTRACT

BACKGROUND: Several studies have demonstrated a strong correlation between impaired Succinate dehydrogenase (SDH) function and the advancement of tumors. As a subunit of SDH, succinate dehydrogenase complex subunit C (SDHC) has been revealed to play tumor suppressive roles in several cancers, while its specific role in colorectal cancer (CRC) still needs further investigation. METHODS: Online database were utilized to investigate the expression of SDHC in colorectal cancer and to assess its correlation with patient prognosis. Cell metastasis was assessed using transwell and wound healing assays, while tumor metastasis was studied in a nude mice model in vivo. Drug screening and RNA sequencing were carried out to reveal the tumor suppressor mechanism of SDHC. Triglycerides, neutral lipids and fatty acid oxidation were measured using the Triglyceride Assay Kit, BODIPY 493/503 and Colorimetric Fatty Acid Oxidation Rate Assay Kit, respectively. The expression levels of enzymes involved in fatty acid metabolism and the PI3K/AKT signaling pathway were determined by quantitative real-time PCR and western blot. RESULTS: Downregulation of SDHC was found to be closely associated with a poor prognosis in CRC. SDHC knockdown promoted CRC metastasis both in vitro and in vivo. Through drug screening and Gene set enrichment analysis, it was discovered that SDHC downregulation was positively associated with the fatty acid metabolism pathways significantly. The effects of SDHC silencing on metastasis were reversed when fatty acid synthesis was blocked. Subsequent experiments revealed that SDHC silencing activated the PI3K/AKT signaling axis, leading to lipid accumulation by upregulating the expression of aldehyde dehydrogenase 3 family member A2 (ALDH3A2) and reduction of fatty acid oxidation rate by suppressing the expression of acyl-coenzyme A oxidase 1 (ACOX1) and carnitine palmitoyltransferase 1A (CPT1A). CONCLUSIONS: SDHC deficiency could potentially enhance CRC metastasis by modulating the PI3K/AKT pathways and reprogramming lipid metabolism.


Subject(s)
Colorectal Neoplasms , Fatty Acids , Mice, Nude , Neoplasm Metastasis , Proto-Oncogene Proteins c-akt , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Fatty Acids/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Signal Transduction , Male , Female , Down-Regulation/genetics , Gene Knockdown Techniques , Mice , Lipid Metabolism/genetics , Mice, Inbred BALB C
10.
BMJ ; 385: e077890, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38897625

ABSTRACT

OBJECTIVE: To compare the effectiveness and safety of nab-paclitaxel, cisplatin, and capecitabine (nab-TPC) with gemcitabine and cisplatin as an alternative first line treatment option for recurrent or metastatic nasopharyngeal carcinoma. DESIGN: Phase 3, open label, multicentre, randomised trial. SETTING: Four hospitals located in China between September 2019 and August 2022. PARTICIPANTS: Adults (≥18 years) with recurrent or metastatic nasopharyngeal carcinoma. INTERVENTIONS: Patients were randomised in a 1:1 ratio to treatment with either nab-paclitaxel (200 g/m2 on day 1), cisplatin (60 mg/m2 on day 1), and capecitabine (1000 mg/m2 twice on days 1-14) or gemcitabine (1 g/m2 on days 1 and 8) and cisplatin (80 mg/m2 on day 1). MAIN OUTCOME MEASURES: Progression-free survival was evaluated by the independent review committee as the primary endpoint in the intention-to-treat population. RESULTS: The median follow-up was 15.8 months in the prespecified interim analysis (31 October 2022). As assessed by the independent review committee, the median progression-free survival was 11.3 (95% confidence interval 9.7 to 12.9) months in the nab-TPC cohort compared with 7.7 (6.5 to 9.0) months in the gemcitabine and cisplatin cohort. The hazard ratio was 0.43 (95% confidence interval 0.25 to 0.73; P=0.002). The objective response rate in the nab-TPC cohort was 83% (34/41) versus 63% (25/40) in the gemcitabine and cisplatin cohort (P=0.05), and the duration of response was 10.8 months in the nab-TPC cohort compared with 6.9 months in the gemcitabine and cisplatin cohort (P=0.009). Treatment related grade 3 or 4 adverse events, including leukopenia (4/41 (10%) v 13/40 (33%); P=0.02), neutropenia (6/41 (15%) v 16/40 (40%); P=0.01), and anaemia (1/41 (2%) v 8/40 (20%); P=0.01), were higher in the gemcitabine and cisplatin cohort than in the nab-TPC cohort. No deaths related to treatment occurred in either treatment group. Survival and long term toxicity are still being evaluated with longer follow-up. CONCLUSION: The nab-TPC regimen showed a superior antitumoural efficacy and favourable safety profile compared with gemcitabine and cisplatin for recurrent or metastatic nasopharyngeal carcinoma. Nab-TPC should be considered the standard first line treatment for recurrent or metastatic nasopharyngeal carcinoma. Longer follow-up is needed to confirm the benefits for overall survival. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1900027112.


Subject(s)
Albumins , Antineoplastic Combined Chemotherapy Protocols , Capecitabine , Cisplatin , Deoxycytidine , Gemcitabine , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplasm Recurrence, Local , Paclitaxel , Humans , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Cisplatin/adverse effects , Male , Middle Aged , Female , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/mortality , Deoxycytidine/analogs & derivatives , Deoxycytidine/administration & dosage , Deoxycytidine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Capecitabine/therapeutic use , Capecitabine/administration & dosage , Adult , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/mortality , Neoplasm Recurrence, Local/drug therapy , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Paclitaxel/adverse effects , Albumins/administration & dosage , Albumins/adverse effects , Albumins/therapeutic use , Aged , Progression-Free Survival , China , Neoplasm Metastasis
11.
Environ Sci Pollut Res Int ; 31(25): 36702-36715, 2024 May.
Article in English | MEDLINE | ID: mdl-38753232

ABSTRACT

The composite material SBC-Fe-x with sludge and Fe3+ was developed by different calcination temperatures (600, 700, and 800 °C) for the removal of tetracycline (TC). The adsorption rates of SBC-Fe-600, SBC-Fe-700, and SBC-Fe-800 were 77.5%, 89%, and 91%, respectively. Furthermore, the Langmuir model indicated that the maximum adsorption capacity of SBC-Fe-700 (157.93 mg/g) was three times greater than that of SBC-Fe-600. The conclusions were confirmed by a series of characterizations that SBC-Fe-700 showed a larger specific surface area, well-developed pore structure, rich oxygen-containing functional groups and a high degree of graphitization. The results of pH experiments indicated the broad applicability of SBC-Fe-700 for TC adsorption. In addition, SBC-Fe-700 suggested outstanding performance in different water environments. This work produced a feasible adsorbent for the removal of TC, and a new direction for sludge resource utilization was proposed.


Subject(s)
Charcoal , Sewage , Tetracycline , Water Pollutants, Chemical , Tetracycline/chemistry , Adsorption , Sewage/chemistry , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Pyrolysis , Iron/chemistry , Temperature , Water Purification/methods
12.
Br J Surg ; 111(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38713611

ABSTRACT

BACKGROUND: It is unknown whether D2 lymphadenectomy + complete mesogastric excision for gastric cancer improves survival compared with just D2 lymphadenectomy. METHODS: Between September 2014 and June 2018, patients with advanced gastric cancer were randomly assigned (1 : 1) to laparoscopic D2 lymphadenectomy or D2 lymphadenectomy + complete mesogastric excision gastrectomy. The modified intention-to-treat population was defined as patients who had pathologically confirmed gastric adenocarcinoma (pT1 N1-3 M0 and pT2-4 N0-3 M0). The primary endpoint was 3-year disease-free survival. Secondary endpoints were the recurrence pattern and overall survival. RESULTS: The median follow-up of patients in the D2 lymphadenectomy group (169 patients) and patients in the D2 lymphadenectomy +complete mesogastric excision group (169 patients) was 55 (interquartile range 37-60) months and 51 (interquartile range 40-60) months respectively. Recurrence occurred in 50 patients in the D2 lymphadenectomy group (29.6%) versus 33 patients in the D2 lymphadenectomy + complete mesogastric excision group (19.5%) (P = 0.032). The 3-year disease-free survival was 75.5% (95% c.i. 68.3% to 81.3%) in the D2 lymphadenectomy group versus 85.0% (95% c.i. 78.7% to 89.6%) in the D2 lymphadenectomy + complete mesogastric excision group (log rank P = 0.042). The HR for recurrence in the D2 lymphadenectomy + complete mesogastric excision group versus the D2 lymphadenectomy group was 0.64 (95% c.i. 0.41 to 0.99) by Cox regression (P = 0.045). The 3-year overall survival rate was 77.5% (95% c.i. 70.4% to 83.1%) in the D2 lymphadenectomy group versus 85.8% (95% c.i. 79.6% to 90.2%) in the D2 lymphadenectomy + complete mesogastric excision group (log rank P = 0.058). The HR for death in the D2 lymphadenectomy + complete mesogastric excision group versus the D2 lymphadenectomy group was 0.64 (95% c.i. 0.41 to 1.02) (P = 0.058). CONCLUSION: Compared with conventional D2 dissection, D2 lymphadenectomy + complete mesogastric excision is associated with better disease-free survival, but there is no statistically significant difference in overall survival. REGISTRATION NUMBER: NCT01978444 (http://www.clinicaltrials.gov).


Subject(s)
Adenocarcinoma , Gastrectomy , Lymph Node Excision , Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Gastrectomy/methods , Lymph Node Excision/methods , Male , Female , Middle Aged , Adenocarcinoma/surgery , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Aged , Laparoscopy/methods , Disease-Free Survival , Neoplasm Recurrence, Local , Adult , Survival Rate , Neoplasm Staging
13.
Opt Express ; 32(6): 10252-10264, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571241

ABSTRACT

Near-eye displays are widely recognized as a groundbreaking technological advancement with the potential to significantly impact daily life. Within the realm of near-eye displays, micro-LEDs have emerged as a highly promising technology owing to their exceptional optical performance, compact form factor, and low power consumption. However, a notable challenge in integrating micro-LEDs into near-eye displays is the efficient light collimation across a wide spectrum range. In this paper, we propose what we believe to be a novel design of a broadband beam collimation metasurface for full-color micro-LEDs by harnessing wavefront phase modulation based on Huygens' principle. Our results demonstrate a substantial reduction in the full width at half maximum (FWHM) angles, achieving a reduction to 1/10, 1/10, and 1/20 for red, green, and blue micro-LEDs compared to those without the metasurface, which is the best collimation result as far as we know. The central light intensity increases by 24.60, 36.49, and 42.15 times. Furthermore, the significant enhancement in the light energy within ±10° is achieved, with the respective multiplication factors of 14.16, 15.60, and 13.00. This metasurface has the potential to revolutionize the field by enabling high-performance, compact, and lightweight micro-LED displays, with applications in near-eye displays, micro-projectors, and beyond.

14.
Ann Anat ; 254: 152262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582236

ABSTRACT

BACKGROUND: The perforator flap has garnered significant interest since its inception due to its advantage of not needing a vascular network at the deep fascial level. Perforator flaps are commonly utilized in different flap transplant surgeries, and the thigh flap is presently the most widely used perforator flap. Is it possible for the calf to replace the thigh as a more suitable site for harvesting materials? Currently, there is a lack of relevant anatomical research. This study aims to address this question from an anatomical and imaging perspective. METHODS: This study used cadavers to observe the branches and courses of perforators on the calf and the distribution of skin branches using microdissection techniques, digital X-ray photography, and micro-computed tomography techniques. RESULTS: The perforators had three main branches: the vertical cutaneous branch, the oblique cutaneous branch, and the superficial fascial branch. The superficial fascial branch traveled in the superficial fascia and connected with the nearby perforators. The vertical and oblique cutaneous branches entered the subdermal layer and connected with each other to create the subdermal vascular network. CONCLUSIONS: We observed an intact calf cutaneous branch chain between the cutaneous nerve and the perforator of the infrapopliteal main artery at the superficial vein site. Utilizing this anatomical structure, the calfskin branch has the potential to serve as a substitute for thigh skin flap transplantation and may be applied to perforator flap transplantation in more locations.


Subject(s)
Cadaver , Leg , Perforator Flap , Humans , Perforator Flap/blood supply , Leg/blood supply , Leg/anatomy & histology , Male , Skin/blood supply , Skin/anatomy & histology , Female , Aged , X-Ray Microtomography
15.
Mycopathologia ; 189(3): 32, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622365

ABSTRACT

The rare fungus Candida saopaulonensis has never been reported to be associated with human infection. We report the draft genome sequence of the first clinical isolate of C. saopaulonensis, which was isolated from a very premature infant with sepsis. This is the first genome assembly reaching the near-complete chromosomal level with structural annotation for this species, opening up avenues for exploring evolutionary patterns and genetic mechanisms of pathogenesis.


Subject(s)
Candida , Sepsis , Humans , Infant, Newborn , Candida/genetics , Genome, Fungal , Infant, Premature
16.
Langmuir ; 40(12): 6198-6211, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38468362

ABSTRACT

Titanium silicon molecular sieve (TS-1) is an oxidation catalyst that possesses a long lifetime of charge transfer excited state, high Ti utilization efficiency, large specific surface area, and good adsorption property; therefore, TS-1 acts as a Ti-based photocatalyst candidate. In this work, TS-1 coupled Bi2MoO6 (TS-1/BMO) photocatalysts were fabricated via a facile hydrothermal route. Interestingly, the optimized TS-1/BMO-1.0 catalyst exhibited a decent photodegradation property toward tetracycline hydrochloride (85.49% in 120 min) under the irradiation of full spectrum light, which were 4.38 and 1.76 times compared to TS-1 and BMO, respectively. The enhanced photodegradation property of the TS-1/BMO-1.0 catalyst could be attributed to the reinforced light-harvesting capacity of the photocatalyst, high charge mobility, and suitable band structure for tetracycline hydrochloride degradation. In addition, the mechanism of photocatalytic degradation of tetracycline hydrochloride by the TS-1/BMO-1.0 catalyst was reasonably proposed based on the band structure, trapping, and ESR tests. This research provided feasible ideas for the design and construction of high-efficiency photocatalysts for contaminant degradation.

17.
J Biol Chem ; 300(5): 107226, 2024 May.
Article in English | MEDLINE | ID: mdl-38537697

ABSTRACT

Epstein-Barr virus (EBV) is a human tumor virus associated with a variety of malignancies, including nasopharyngeal carcinoma, gastric cancers, and B-cell lymphomas. N6-methyladenosine (m6A) modifications modulate a wide range of cellular processes and participate in the regulation of virus-host cell interactions. Here, we discovered that EBV infection downregulates toll-like receptor 9 (TLR9) m6A modification levels and thus inhibits TLR9 expression. TLR9 has multiple m6A modification sites. Knockdown of METTL3, an m6A "writer", decreases TLR9 protein expression by inhibiting its mRNA stability. Mechanistically, Epstein-Barr nuclear antigen 1 increases METTL3 protein degradation via K48-linked ubiquitin-proteasome pathway. Additionally, YTHDF1 was identified as an m6A "reader" of TLR9, enhancing TLR9 expression by promoting mRNA translation in an m6A -dependent manner, which suggests that EBV inhibits TLR9 translation by "hijacking" host m6A modification mechanism. Using the METTL3 inhibitor STM2457 inhibits TLR9-induced B cell proliferation and immunoglobulin secretion, and opposes TLR9-induced immune responses to assist tumor cell immune escape. In clinical lymphoma samples, the expression of METTL3, YTHDF1, and TLR9 was highly correlated with immune cells infiltration. This study reveals a novel mechanism that EBV represses the important innate immunity molecule TLR9 through modulating the host m6A modification system.


Subject(s)
Adenosine , Herpesvirus 4, Human , Methyltransferases , RNA-Binding Proteins , Toll-Like Receptor 9 , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/virology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Immune Evasion , Methyltransferases/metabolism , Methyltransferases/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Cell Line, Tumor
18.
Clin Chim Acta ; 557: 117886, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38556135

ABSTRACT

Liver cirrhosis (LC) represents a significant hepatic disorder that persistently commands the attention of the scientific community, especially concerning its pathogenesis and therapeutic approaches. Metabolomics, the comprehensive profiling of an organism's metabolome, has been increasingly applied in the research of cirrhosis over the past decade. This review summarizes the recent advancements and applications of metabolomics within the context of LC research, in recent five years. It highlights the role of metabolomics in the diagnosis of LC, the assessment of prognostic markers, and the evaluation of therapeutic outcomes. The discussion focuses on the potential and challenges of metabolomics in LC research, including the evolution of analytical technologies, advancements in bioinformatics, and the challenges impeding clinical implementation. Additionally, the review anticipates the forthcoming developments in metabolomics related to LC research, with the objective of facilitating innovative approaches for early detection and intervention in LC.


Subject(s)
Metabolome , Metabolomics , Humans , Mass Spectrometry , Chromatography, Liquid , Liver Cirrhosis/diagnosis
19.
Environ Res ; 248: 118526, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38395334

ABSTRACT

The scope of the current study was to investigate the efficiency of a two-stage anaerobic-aerobic process for the simultaneous treatment and valorization of selective wastewater streams from a confectionary industry. The specific wastewater (confectionary industry wastewater, CIW) was a mixture of the rinsing eluting during washing of the cauldrons in which jellies and syrups were produced, and contained mainly readily fermentable sugars, being thus of high organic load. The first stage of the process was the dark fermentation (DF) of the CIW in continuous, attached-biomass systems, in which the effect on hydrogen yields and distribution of metabolites were studied for different packing materials (ceramic or plastic), hydraulic retention times, HRTs (12 h-30 h) and feed substrate concentration (20 g COD/L- 50 g COD/L). In the second stage, the effectiveness of the aerobic treatment of the DF effluents was evaluated in terms of the reduction of the organic load and the production of polyhydroxyalkanoates (PHAs) through an enriched mixed microbial culture (MMC). The MMC was developed in a continuous draw and fill system, in which the accumulation potential of PHAs was studied. It was shown that the hydrogen production rates decreased for increasing substrate concentration and HRTs, with a maximum of 12.70 ± 0.35 m3 H2/m3 initial CIW achieved for the lowest HRT and feed concentration and using ceramic beads as packing material. Butyrate, acetate and lactate were the main metabolites generated in all cases, in different ratios. The distribution of metabolites during DF was shown to highly affect the efficiency of the second process in terms of both the reduction of organic load and the PHAs yields. The highest removal of organic load achieved after 48 h of aerobic treatment was 84.0 ± 0.9 %, whereas the maximum PHAs yield was 21.46 ± 0.13 kg PHAs/m3 initial CIW.


Subject(s)
Polyhydroxyalkanoates , Wastewater , Polyhydroxyalkanoates/metabolism , Bioreactors , Anaerobiosis , Fermentation , Hydrogen/metabolism
20.
Nat Commun ; 15(1): 1029, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310101

ABSTRACT

The antiangiogenic agent apatinib has been shown to clinically improve responses to immune checkpoint inhibitors in several cancer types. Patients with N3 nasopharyngeal carcinoma have a high risk of distant metastasis, however, if the addition of immunotherapy to standard treatment could improve efficacy is unclear. In this phase II clinical trial (ChiCTR2000032317), 49 patients with stage TanyN3M0 nasopharyngeal carcinoma were enrolled and received the combination of three cycles of induction chemotherapy, camrelizumab and apatinib followed by chemoradiotherapy. Here we report on the primary outcome of distant metastasis-free survival and secondary end points of objective response rate, failure-free survival, locoregional recurrence-free survival, overall survival and toxicity profile. After induction therapy, all patients had objective response, including 13 patients (26.5%) with complete response. After a median follow-up of 28.7 months, the primary endpoint of 1-year distant metastasis-free survival was met for the cohort (1-year DMFS rate: 98%). Grade≥3 toxicity appeared in 32 (65.3%) patients, with the most common being mucositis (14[28.6%]) and nausea/vomiting (9[18.4%]). In this work, camrelizumab and apatinib in combination with induction chemotherapy show promising distant metastasis control with acceptable safety profile in patients with stage TanyN3M0 nasopharyngeal carcinoma.


Subject(s)
Antibodies, Monoclonal, Humanized , Induction Chemotherapy , Nasopharyngeal Neoplasms , Pyridines , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Induction Chemotherapy/adverse effects , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cisplatin/therapeutic use , Chemoradiotherapy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL