Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 127: 22-31, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31088613

ABSTRACT

The recombinant rAgaZC-1 was a family GH50 ß-agarase from Vibrio sp. ZC-1 (CICC 24670). In this paper, the mutant D622G (i.e., mutate the aspartic acid at position 622 to glycine) had better thermo-stability than rAgaZC-1, showing 1.5℃ higher T5010 (the temperature at which the half-time is 10 min) and 4-folds of half-time at 41℃, while they had almost same optimum temperature (38.5℃), optimum pH (pH6.0) and catalytic efficiency. Thermal deactivation kinetical analysis showed that D622G had higher activation energy for deactivation, enthalpy and Gibbs free energy than rAgaZC-1, indicating that more energy is required by D622G for deactivation. Substrate can protect agarase against thermal inactivation, especially D622G. Hence the yield of agarose hydrolysis catalyzed by D622G was higher than that by rAgaZC-1. The models of D622G and rAgaZC-1 predicted by homology modeling were compared to find that it is the improved distribution of surface electrostatic potential, great symmetric positive potential and more hydrophobic interactions of D622G that enhance the thermo-stability.


Subject(s)
Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hot Temperature , Mutagenesis , Vibrio/enzymology , Enzyme Stability , Glycoside Hydrolases/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Protein Conformation , Protein Stability , Sepharose/metabolism
2.
PLoS One ; 6(10): e26767, 2011.
Article in English | MEDLINE | ID: mdl-22046350

ABSTRACT

Integral membrane proteins constitute 25-30% of genomes and play crucial roles in many biological processes. However, less than 1% of membrane protein structures are in the Protein Data Bank. In this context, it is important to develop reliable computational methods for predicting the structures of membrane proteins. Here, we present the first application of random forest (RF) for residue-residue contact prediction in transmembrane proteins, which we term as TMhhcp. Rigorous cross-validation tests indicate that the built RF models provide a more favorable prediction performance compared with two state-of-the-art methods, i.e., TMHcon and MEMPACK. Using a strict leave-one-protein-out jackknifing procedure, they were capable of reaching the top L/5 prediction accuracies of 49.5% and 48.8% for two different residue contact definitions, respectively. The predicted residue contacts were further employed to predict interacting helical pairs and achieved the Matthew's correlation coefficients of 0.430 and 0.424, according to two different residue contact definitions, respectively. To facilitate the academic community, the TMhhcp server has been made freely accessible at http://protein.cau.edu.cn/tmhhcp.


Subject(s)
Algorithms , Computational Biology/methods , Membrane Proteins/chemistry , Amino Acids , Internet , Protein Conformation
3.
Comput Biol Chem ; 35(5): 308-18, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-22000802

ABSTRACT

Profile-profile alignment algorithms have proven powerful for recognizing remote homologs and generating alignments by effectively integrating sequence evolutionary information into scoring functions. In comparison to scoring function, the development of gap penalty functions has rarely been addressed in profile-profile alignment algorithms. Although indel frequency profiles have been used to construct profile-based variable gap penalties in some profile-profile alignment algorithms, there is still no fair comparison between variable gap penalties and traditional linear gap penalties to quantify the improvement of alignment accuracy. We compared two linear gap penalty functions, the traditional affine gap penalty (AGP) and the bilinear gap penalty (BGP), with two profile-based variable gap penalty functions, the Profile-based Gap Penalty used in SP(5) (SPGP) and a new Weighted Profile-based Gap Penalty (WPGP) developed by us, on some well-established benchmark datasets. Our results show that profile-based variable gap penalties get limited improvements than linear gap penalties, whether incorporated with secondary structure information or not. Secondary structure information appears less powerful to be incorporated into gap penalties than into scoring functions. Analysis of gap length distributions indicates that gap penalties could stably maintain corresponding distributions of gap lengths in their alignments, but the distribution difference from reference alignments does not reflect the performance of gap penalties. There is useful information in indel frequency profiles, but it is still not good enough for improving alignment accuracy when used in profile-based variable gap penalties. All of the methods tested in this work are freely accessible at http://protein.cau.edu.cn/gppat/.


Subject(s)
Sequence Alignment/methods , Sequence Analysis, Protein/methods , Algorithms , Amino Acid Sequence , Computational Biology , Databases, Protein , Molecular Sequence Data , Protein Structure, Secondary , Sensitivity and Specificity , Sequence Alignment/statistics & numerical data , Sequence Analysis, Protein/statistics & numerical data
4.
PLoS One ; 6(7): e22930, 2011.
Article in English | MEDLINE | ID: mdl-21829559

ABSTRACT

As one of the most important reversible protein post-translation modifications, ubiquitination has been reported to be involved in lots of biological processes and closely implicated with various diseases. To fully decipher the molecular mechanisms of ubiquitination-related biological processes, an initial but crucial step is the recognition of ubiquitylated substrates and the corresponding ubiquitination sites. Here, a new bioinformatics tool named CKSAAP_UbSite was developed to predict ubiquitination sites from protein sequences. With the assistance of Support Vector Machine (SVM), the highlight of CKSAAP_UbSite is to employ the composition of k-spaced amino acid pairs surrounding a query site (i.e. any lysine in a query sequence) as input. When trained and tested in the dataset of yeast ubiquitination sites (Radivojac et al, Proteins, 2010, 78: 365-380), a 100-fold cross-validation on a 1∶1 ratio of positive and negative samples revealed that the accuracy and MCC of CKSAAP_UbSite reached 73.40% and 0.4694, respectively. The proposed CKSAAP_UbSite has also been intensively benchmarked to exhibit better performance than some existing predictors, suggesting that it can be served as a useful tool to the community. Currently, CKSAAP_UbSite is freely accessible at http://protein.cau.edu.cn/cksaap_ubsite/. Moreover, we also found that the sequence patterns around ubiquitination sites are not conserved across different species. To ensure a reasonable prediction performance, the application of the current CKSAAP_UbSite should be limited to the proteome of yeast.


Subject(s)
Amino Acids/metabolism , Computational Biology , Position-Specific Scoring Matrices , Proteins/chemistry , Sequence Analysis, Protein/methods , Ubiquitination , Humans , Protein Processing, Post-Translational , Support Vector Machine
5.
BMC Bioinformatics ; 12: 76, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21414186

ABSTRACT

BACKGROUND: Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery. RESULTS: Based on the observation that almost all OMPs consist of antiparallel ß-strands in a barrel shape and that their secondary structure arrangements differ from those of other types of proteins, we propose a simple method called SSEA-OMP to identify OMPs using secondary structure element alignment. Through intensive benchmark experiments, the proposed SSEA-OMP method is better than some well-established OMP detection methods. CONCLUSIONS: The major advantage of SSEA-OMP is its good prediction performance considering its simplicity. The web server implements the method is freely accessible at http://protein.cau.edu.cn/SSEA-OMP/index.html.


Subject(s)
Membrane Proteins/chemistry , Proteomics/methods , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/analysis , Escherichia coli Proteins/genetics , Protein Structure, Secondary
6.
BMC Struct Biol ; 9: 73, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20003393

ABSTRACT

BACKGROUND: The triosephosphate isomerase (TIM)-barrel fold occurs frequently in the proteomes of different organisms, and the known TIM-barrel proteins have been found to play diverse functional roles. To accelerate the exploration of the sequence-structure protein landscape in the TIM-barrel fold, a computational tool that allows sensitive detection of TIM-barrel proteins is required. RESULTS: To develop a new TIM-barrel protein identification method in this work, we consider three descriptors: a sequence-alignment-based descriptor using PSI-BLAST e-values and bit scores, a descriptor based on secondary structure element alignment (SSEA), and a descriptor based on the occurrence of PROSITE functional motifs. With the assistance of Support Vector Machine (SVM), the three descriptors were combined to obtain a new method with improved performance, which we call TIM-Finder. When tested on the whole proteome of Bacillus subtilis, TIM-Finder is able to detect 194 TIM-barrel proteins at a 99% confidence level, outperforming the PSI-BLAST search as well as one existing fold recognition method. CONCLUSIONS: TIM-Finder can serve as a competitive tool for proteome-wide TIM-barrel protein identification. The TIM-Finder web server is freely accessible at http://202.112.170.199/TIM-Finder/.


Subject(s)
Bacillus subtilis/chemistry , Computational Biology/methods , Protein Folding , Proteome/analysis , Triose-Phosphate Isomerase/analysis , Amino Acid Motifs , Databases, Nucleic Acid , Isoenzymes/analysis , Isoenzymes/chemistry , Isoenzymes/metabolism , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary , Proteome/chemistry , Proteome/metabolism , Sequence Analysis, Protein , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism
7.
BMC Bioinformatics ; 10: 416, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20003426

ABSTRACT

BACKGROUND: Machine learning-based methods have been proven to be powerful in developing new fold recognition tools. In our previous work [Zhang, Kochhar and Grigorov (2005) Protein Science, 14: 431-444], a machine learning-based method called DescFold was established by using Support Vector Machines (SVMs) to combine the following four descriptors: a profile-sequence-alignment-based descriptor using Psi-blast e-values and bit scores, a sequence-profile-alignment-based descriptor using Rps-blast e-values and bit scores, a descriptor based on secondary structure element alignment (SSEA), and a descriptor based on the occurrence of PROSITE functional motifs. In this work, we focus on the improvement of DescFold by incorporating more powerful descriptors and setting up a user-friendly web server. RESULTS: In seeking more powerful descriptors, the profile-profile alignment score generated from the COMPASS algorithm was first considered as a new descriptor (i.e., PPA). When considering a profile-profile alignment between two proteins in the context of fold recognition, one protein is regarded as a template (i.e., its 3D structure is known). Instead of a sequence profile derived from a Psi-blast search, a structure-seeded profile for the template protein was generated by searching its structural neighbors with the assistance of the TM-align structural alignment algorithm. Moreover, the COMPASS algorithm was used again to derive a profile-structural-profile-alignment-based descriptor (i.e., PSPA). We trained and tested the new DescFold in a total of 1,835 highly diverse proteins extracted from the SCOP 1.73 version. When the PPA and PSPA descriptors were introduced, the new DescFold boosts the performance of fold recognition substantially. Using the SCOP_1.73_40% dataset as the fold library, the DescFold web server based on the trained SVM models was further constructed. To provide a large-scale test for the new DescFold, a stringent test set of 1,866 proteins were selected from the SCOP 1.75 version. At a less than 5% false positive rate control, the new DescFold is able to correctly recognize structural homologs at the fold level for nearly 46% test proteins. Additionally, we also benchmarked the DescFold method against several well-established fold recognition algorithms through the LiveBench targets and Lindahl dataset. CONCLUSIONS: The new DescFold method was intensively benchmarked to have very competitive performance compared with some well-established fold recognition methods, suggesting that it can serve as a useful tool to assist in template-based protein structure prediction. The DescFold server is freely accessible at http://202.112.170.199/DescFold/index.html.


Subject(s)
Computational Biology/methods , Internet , Proteins/chemistry , Software , Artificial Intelligence , Databases, Protein , Models, Molecular , Protein Folding , Proteins/metabolism , Sequence Alignment , Sequence Analysis, Protein/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...