Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Xray Sci Technol ; 31(6): 1165-1187, 2023.
Article in English | MEDLINE | ID: mdl-37694333

ABSTRACT

BACKGROUND: Recently, one promising approach to suppress noise/artifacts in low-dose CT (LDCT) images is the CNN-based approach, which learns the mapping function from LDCT to normal-dose CT (NDCT). However, most CNN-based methods are purely data-driven, thus lacking sufficient interpretability and often losing details. OBJECTIVE: To solve this problem, we propose a deep convolutional dictionary learning method for LDCT denoising, in which a novel convolutional dictionary learning model with adaptive window (CDL-AW) is designed, and a corresponding enhancement-based convolutional dictionary learning network (called ECDAW-Net) is constructed to unfold the CDL-AW model iteratively using the proximal gradient descent technique. METHODS: In detail, the adaptive window-constrained convolutional dictionary atom is proposed to alleviate spectrum leakage caused by data truncation during convolution. Furthermore, in the ECDAW-Net, a multi-scale edge extraction module that consists of LoG and Sobel convolution layers is proposed in the unfolding iteration, to supplement lost textures and details. Additionally, to further improve the detail retention ability, the ECDAW-Net is trained by the compound loss function of the pixel-level MSE loss and the proposed patch-level loss, which can assist to retain richer structural information. RESULTS: Applying ECDAW-Net to the Mayo dataset, we obtained the highest peak signal-to-noise ratio (33.94) and sub-optimal structural similarity (0.92). CONCLUSIONS: Compared with some state-of-art methods, the interpretable ECDAW-Net performs well in suppressing noise/artifacts and preserving textures of tissue.


Subject(s)
Tomography, X-Ray Computed , Signal-To-Noise Ratio
2.
Phys Med Biol ; 68(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37536336

ABSTRACT

Objective.Various deep learning methods have recently been used for low dose CT (LDCT) denoising. Aggressive denoising may destroy the edge and fine anatomical structures of CT images. Therefore a key issue in LDCT denoising tasks is the difficulty of balancing noise/artifact suppression and edge/structure preservation.Approach.We proposed an LDCT denoising network based on the encoder-decoder structure, namely the Learnable PM diffusion coefficient and efficient attention network (PMA-Net). First, using the powerful feature modeling capability of partial differential equations, we constructed a multiple learnable edge module to generate precise edge information, incorporating the anisotropic image processing idea of Perona-Malik (PM) model into the neural network. Second, a multiscale reformative coordinate attention module was designed to extract multiscale information. Non-overlapping dilated convolution capturing abundant contextual content was combined with coordinate attention which could embed the spatial location information of important features into the channel attention map. Finally, we imposed additional constraints on the edge information using edge-enhanced multiscale perceptual loss to avoid structure loss and over-smoothing.Main results.Experiments are conducted on simulated and real datasets. The quantitative and qualitative results show that the proposed method has better performance in suppressing noise/artifacts and preserving edges/structures.Significance.This work proposes a novel edge feature extraction method that unfolds partial differential equation into neural networks, which contributes to the interpretability and clinical application value of neural network.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Anisotropy , Tomography, X-Ray Computed , Signal-To-Noise Ratio
3.
J Xray Sci Technol ; 31(5): 915-933, 2023.
Article in English | MEDLINE | ID: mdl-37355934

ABSTRACT

BACKGROUND: Low-dose CT (LDCT) images usually contain serious noise and artifacts, which weaken the readability of the image. OBJECTIVE: To solve this problem, we propose a compound feature attention network with edge enhancement for LDCT denoising (CFAN-Net), which consists of an edge-enhanced module and a proposed compound feature attention block (CFAB). METHODS: The edge enhancement module extracts edge details with the trainable Sobel convolution. CFAB consists of an interactive feature learning module (IFLM), a multi-scale feature fusion module (MFFM), and a joint attention module (JAB), which removes noise from LDCT images in a coarse-to-fine manner. First, in IFLM, the noise is initially removed by cross-latitude interactive judgment learning. Second, in MFFM, multi-scale and pixel attention are integrated to explore fine noise removal. Finally, in JAB, we focus on key information, extract useful features, and improve the efficiency of network learning. To construct a high-quality image, we repeat the above operation by cascading CFAB. RESULTS: By applying CFAN-Net to process the 2016 NIH AAPM-Mayo LDCT challenge test dataset, experiments show that the peak signal-to-noise ratio value is 33.9692 and the structural similarity value is 0.9198. CONCLUSIONS: Compared with several existing LDCT denoising algorithms, CFAN-Net effectively preserves the texture of CT images while removing noise and artifacts.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Signal-To-Noise Ratio , Artifacts , Image Processing, Computer-Assisted
4.
J Xray Sci Technol ; 31(3): 593-609, 2023.
Article in English | MEDLINE | ID: mdl-36970929

ABSTRACT

BACKGROUND: Low-Dose computed tomography (LDCT) reduces radiation damage to patients, however, the reconstructed images contain severe noise, which affects doctors' diagnosis of the disease. The convolutional dictionary learning has the advantage of the shift-invariant property. The deep convolutional dictionary learning algorithm (DCDicL) combines deep learning and convolutional dictionary learning, which has great suppression effects on Gaussian noise. However, applying DCDicL to LDCT images cannot get satisfactory results. OBJECTIVE: To address this challenge, this study proposes and tests an improved deep convolutional dictionary learning algorithm for LDCT image processing and denoising. METHODS: First, we use a modified DCDicL algorithm to improve the input network and make it do not need to input noise intensity parameter. Second, we use DenseNet121 to replace the shallow convolutional network to learn the prior on the convolutional dictionary, which can obtain more accurate convolutional dictionary. Last, in the loss function, we add MSSIM to enhance the detail retention ability of the model. RESULTS: The experimental results on the Mayo dataset show that the proposed model obtained an average value of 35.2975 dB in PSNR, which is 0.2954 -1.0573 dB higher than the mainstream LDCT algorithm, indicating the excellent denoising performance. CONCLUSION: The study demonstrates that the proposed new algorithm can effectively improve the quality of LDCT images acquired in the clinical practice.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Humans , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Neural Networks, Computer
5.
J Xray Sci Technol ; 30(6): 1085-1097, 2022.
Article in English | MEDLINE | ID: mdl-35938282

ABSTRACT

OBJECTIVE: In order to solve the problem of image quality degradation of CT reconstruction under sparse angle projection, we propose to develop and test a new sparse angle CT reconstruction method based on group sparse. METHODS: In this method, the group-based sparse representation is introduced into the statistical iterative reconstruction framework as a regularization term to construct the objective function. The group-based sparse representation no longer takes a single patch as the minimum unit of sparse representation, while it uses Euclidean distance as a similarity measure, thus it divides similar patch into groups as basic units for sparse representation. This method fully considers the local sparsity and non-local self-similarity of image. The proposed method is compared with several commonly used CT image reconstruction methods including FBP, SART, SART-TV and GSR-SART with experiments carried out on Sheep_Logan phantom and abdominal and pelvic images. RESULTS: In three experiments, the visual effect of the proposed method is the best. Under 64 projection angles, the lowest RMSE is 0.004776 and the highest VIF is 0.948724. FSIM and SSIM are all higher than 0.98. Under 50 projection angles, the index of the proposed method remains achieving the best image quality. CONCLUSION: Qualitative and quantitative results of this study demonstrate that this new proposed method can not only remove strip artifacts, but also effectively protect image details.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Sheep , Animals , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Artifacts , Tomography, X-Ray Computed/methods
6.
J Xray Sci Technol ; 30(4): 709-724, 2022.
Article in English | MEDLINE | ID: mdl-35404300

ABSTRACT

The objective of this study is to apply an improved Faster-RCNN model in order to solve the problems of low detection accuracy and slow detection speed in spark plug defect detection. In detail, an attention module based symmetrical convolutional network (ASCN) is designed as the backbone to extract multi-scale features. Then, a multi-scale region generation network (MRPN), in which InceptionV2 is used to achieve sliding windows of different scales instead of a single sliding window, is proposed and tested. Additionally, a dataset of X-ray spark plug images is established, which contains 1,402 images. These images are divided into two subsets with a ratio of 4:1 for training and testing the improved Faster-RCNN model, respectively. The proposed model is transferred and learned on the pre-training model of MS COCO dataset. In the test experiments, the proposed method achieves an average accuracy of 89% and a recall of 97%. Compared with other Faster-RCNN models, YOLOv3, SSD and RetinaNet, our proposed new method improves the average accuracy by more than 6% and the recall by more than 2%. Furthermore, the new method can detect at 20fps when the input image size is 1024×1024×3 and can also be used for real-time automatic detection of spark plug defects.


Subject(s)
Algorithms , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...