Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 352: 141363, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346508

ABSTRACT

Adsorptive separation membranes are widely utilized for the removal of toxic dyeing pollutants from dyeing wastewater. However, developing novel adsorption membranes with large adsorption capacities and enhanced adsorption performance for dyes in actual wastewater poses a significant challenge. This study focuses on the fabrication of crown ether-containing copolymer porous membrane (CRPM) and investigation of the adsorption performance of dyes from aqueous solutions. The morphology structure and pore size distribution revealed that the membrane was endowed with rich micropores and hierarchical porous structures. Three typical cationic dyes (MB, RhB, CV) and an anionic dye (MO) were selected to evaluate the adsorption behavior. The results of adsorption isotherms and kinetics demonstrated that the adsorption data could be well-fitted using the Freundlich and pseudo-first-order kinetic models, the thermodynamic parameters revealed that the adsorption process of dyes on CRPM is a spontaneous endothermic reaction. The membrane exhibited excellent adsorption performance for cationic dyes, with RhB displaying a higher maximum adsorption capacity than previously reported porous membranes. Notably, dynamic adsorption-desorption filtration demonstrated a rapid removal efficiency, with RhB, MB, and CV achieving removal rates of 99.09%, 98.63%, and 99.14% respectively, after five cycles. The filtration volume of the CRPM membrane was 2.4-fold greater than that of a traditional PVDF membrane when applied to actual dyeing wastewater. DFT theoretical calculations were employed to elucidate the adsorption mechanism. These calculations confirmed the significant roles of electrostatic interactions, H-bonds and π-π interactions in facilitating the high-efficiency adsorption of cationic dyes. These findings highlight the potential of the crown ether-containing copolymer as a promising material for adsorption separation membranes in the treatment of dyeing wastewater.


Subject(s)
Crown Ethers , Water Pollutants, Chemical , Coloring Agents/chemistry , Wastewater , Ether , Adsorption , Porosity , Water Pollutants, Chemical/analysis , Ethyl Ethers , Cations , Kinetics , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...