Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomics ; 299(1): 54, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758218

ABSTRACT

Soybean [Glycine max (L.) Merr.] is an important legume crop worldwide, which provides abundant plant protein and oil for human beings. Soybean mosaic virus (SMV) can cause serious damage to the yield and quality of soybean, but it is difficult to control SMV with chemicals, breeding SMV-resistant varieties has become the most effective way to control the disease. Therefore, it is important to identify SMV resistance genes from soybean resources and apply them to soybean breeding. In this study, the disease rates (DRs) of 219 soybean accessions to SMV strain SC7 in two environments were investigated. A high-density NJAU 355 K SoySNP array was used for genome-wide association study (GWAS) of DR. A 274 kb region on chromosome 15 (1,110,567 bp to 1,384,173 bp) was repeatedly detected in two environments. Six new significant single nucleotide polymorphisms (SNPs) on chromosome 15 were identified. Four of these six SNPs were located within two candidate genes, Glyma.15G015700 and Glyma.15G015800. The elite haplotype Glyma.15G015700Hap I with low DR exhibited strong resistance to SC7. The expression of Glyma.15G015700 in the SMV-resistant accession increased significantly after inoculation with SC7. Furthermore, most of the proteins predicted to interact with Glyma.15G015700 are heat shock proteins, which have been shown to be related to disease resistance. In summary, new SMV resistance loci and a new candidate gene, Glyma.15G015700, were identified and might be utilized in further soybean disease resistance breeding.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Glycine max , Plant Diseases , Polymorphism, Single Nucleotide , Potyvirus , Glycine max/genetics , Glycine max/virology , Disease Resistance/genetics , Plant Diseases/virology , Plant Diseases/genetics , Potyvirus/pathogenicity , Potyvirus/genetics , Genes, Plant/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Plant Breeding/methods , Haplotypes , Quantitative Trait Loci/genetics
2.
Plant Biotechnol J ; 18(6): 1384-1395, 2020 06.
Article in English | MEDLINE | ID: mdl-31769589

ABSTRACT

Isoflavonoids, which include a variety of secondary metabolites, are derived from the phenylpropanoid pathway and are distributed predominantly in leguminous plants. These compounds play a critical role in plant-environment interactions and are beneficial to human health. Isoflavone synthase (IFS) is a key enzyme in isoflavonoid synthesis and shares a common substrate with flavanone-3-hydroxylase (F3H) and flavone synthase II (FNS II). In this study, CRISPR/Cas9-mediated multiplex gene-editing technology was employed to simultaneously target GmF3H1, GmF3H2 and GmFNSII-1 in soya bean hairy roots and plants. Various mutation types and frequencies were observed in hairy roots. Higher mutation efficiencies were found in the T0 transgenic plants, with a triple gene mutation efficiency of 44.44%, and these results of targeted mutagenesis were stably inherited in the progeny. Metabolomic analysis of T0 triple-mutants leaves revealed significant improvement in isoflavone content. Compared with the wild type, the T3 generation homozygous triple mutants had approximately twice the leaf isoflavone content, and the soya bean mosaic virus (SMV) coat protein content was significantly reduced by one-third after infection with strain SC7, suggesting that increased isoflavone content enhanced the leaf resistance to SMV. The isoflavone content in the seeds of T2 triple mutants was also significantly increased. This study provides not only materials for the improvement of soya bean isoflavone content and resistance to SMV but also a simple system to generate multiplex mutations in soya bean, which may be beneficial for further breeding and metabolic engineering.


Subject(s)
Isoflavones , Mosaic Viruses , CRISPR-Cas Systems/genetics , Metabolic Engineering , Plants, Genetically Modified/genetics , Glycine max/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...