Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 17(6): e2006882, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33470524

ABSTRACT

The inherent features of covalent organic frameworks (COFs) make them highly attractive for uranium recovery applications. A key aspect yet to be explored is how to improve the selectivity and efficiency of COFs for recovering uranium from seawater. To achieve this goal, a series of robust and hydrophilic benzoxazole-based COFs is developed (denoted as Tp-DBD, Bd-DBD, and Hb-DBD) as efficient adsorbents for photo-enhanced targeted uranium recovery. Benefiting from the hydroxyl groups and the formation of benzoxazole rings, the hydrophilic Tp-DBD shows outstanding stability and chemical reduction properties. Meanwhile, the synergistic effect of the hydroxyl groups and the benzoxazole rings in the π-conjugated frameworks significantly decrease the optical band gap, and improve the affinity and capacity to uranium recovery. In seawater, the adsorption capacity of uranium is 19.2× that of vanadium, a main interfering metal in uranium extraction.

2.
Angew Chem Int Ed Engl ; 59(40): 17684-17690, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32583543

ABSTRACT

Uranium is a key resource for the development of the nuclear industry, and extracting uranium from the natural seawater is one of the most promising ways to address the shortage of uranium resources. Herein, a semiconducting covalent organic framework (named NDA-TN-AO) with excellent photocatalytic and photoelectric activities was synthesized. The excellent photocatalytic effect endowed NDA-TN-AO with a high anti-biofouling activity by generating biotoxic reactive oxygen species and promoting photoelectrons to reduce the adsorbed UVI to insoluble UIV , thereby increasing the uranium extraction capacity. Owing to the photoinduced effect, the adsorption capacity of NDA-TN-AO to uranium in seawater reaches 6.07 mg g-1 , which is 1.33 times of that in dark. The NDA-TN-AO with enhanced adsorption capacity is a promising material for extracting uranium from the natural seawater.

SELECTION OF CITATIONS
SEARCH DETAIL
...