Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(14): 8559-8568, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35424791

ABSTRACT

Polyhedral oligomeric silsesquioxane (POSS) and a highly effective 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-based flame retardant co-curing agent (D-bp) were chemically introduced into the 4,4'-diaminodiphenyl methane (DDM)/diglycidyl ether of bisphenol A (DGEBA) epoxy system to create organic-inorganic hybrid epoxy composites with simultaneously improved flame retardancy and mechanical properties. The results revealed that POSS/D-bp/DGEBA hybrid composites exhibited excellent comprehensive performance, in which the V-0 criterion of the UL-94 test was passed and the peak of heat release rate (P-HRR) was significantly decreased from 939 to 371 kW m-2 when the phosphorus content was only 0.25 wt%. The glass transition temperature (T g) increased by 16.2 °C and obvious improvement in the mechanical properties was also evidenced.

2.
Molecules ; 24(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779185

ABSTRACT

The high crystallization at room temperature and high cost of polyoxytetramethylene glycol (PTMG) have become obstacles to its application. To overcome these problems, a segment of PTMG can be incorporated into a block copolymer. In this work, polypropylene (PPO) glycol-polyoxytetramethylene (PPO-PTMG) multiblock copolymers were designed and synthesized through a chain extension between hydroxyl (OH)-terminated PPO and PTMG oligomers. The chain extenders, feed ratios of the catalyst/chain extender/OH groups, reaction temperature, and time were optimized several times to obtain a PPO-PTMG with low crystallization and high molecular weight. Multiblock copolymers with low crystallization and high average molecular weight (Mn = 1.0-1.4 × 104 Dalton) were harvested using m-phthaloyl chloride as the chain extender. The OH-terminated PPO-PTMG multiblock copolymer with high Mn and a functionality near two was further siliconized by 3-isocyanatopropyltrimethoxysilane to synthesize a novel silyl-terminated polyether. This polyether has an appropriate vulcanizing property and potential applications in sealants/adhesive fields.


Subject(s)
Methanol/analogs & derivatives , Polymers/chemistry , Propylene Glycols/chemistry , Adhesives/chemistry , Biocompatible Materials/chemistry , Methanol/chemistry , Molecular Weight , Polyesters/chemistry , Polyethylene Glycols/chemistry , Temperature
3.
Nat Commun ; 8: 14657, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28251985

ABSTRACT

Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.


Subject(s)
Carbon Fiber/chemistry , Hot Temperature , Recycling , Materials Testing , Polymerization , Shear Strength , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...