Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
2.
bioRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38293107

ABSTRACT

Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate that these agents are potent inhibitors of N. fowleri ENO ( Nf ENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC 50 value of 0.14 ± 0.04 µM) that was toxic to trophozoites (EC 50 value of 0.21 ± 0.02 µM) while the reported CC 50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of Nf ENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of Nf ENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the conclusion of the experiment, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. Brains of six of the eight survivors were positive for amoebae, suggesting the agent at the tested dose suppressed, but did not eliminate, infection. These findings suggest that HEX is a promising lead for the treatment of PAM.

3.
Pathogens ; 12(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38003754

ABSTRACT

Glucose metabolism is critical for the African trypanosome, Trypanosoma brucei, serving as the lone source of ATP production for the bloodstream form (BSF) parasite in the glucose-rich environment of the host blood. Recently, phosphonate inhibitors of human enolase (ENO), the enzyme responsible for the interconversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP) in glycolysis or PEP to 2-PG in gluconeogenesis, have been developed for the treatment of glioblastoma multiforme (GBM). Here, we have tested these agents against T. brucei ENO (TbENO) and found the compounds to be potent enzyme inhibitors and trypanocides. For example, (1-hydroxy-2-oxopyrrolidin-3-yl) phosphonic acid (deoxy-SF2312) was a potent enzyme inhibitor (IC50 value of 0.60 ± 0.23 µM), while a six-membered ring-bearing phosphonate, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX), was less potent (IC50 value of 2.1 ± 1.1 µM). An analog with a larger seven-membered ring, (1-hydroxy-2-oxoazepan-3-yl) phosphonic acid (HEPTA), was not active. Molecular docking simulations revealed that deoxy-SF2312 and HEX had binding affinities of -6.8 and -7.5 kcal/mol, respectively, while the larger HEPTA did not bind as well, with a binding of affinity of -4.8 kcal/mol. None of these compounds were toxic to BSF parasites; however, modification of enzyme-active phosphonates through the addition of pivaloyloxymethyl (POM) groups improved activity against T. brucei, with POM-modified (1,5-dihydroxy-2-oxopyrrolidin-3-yl) phosphonic acid (POMSF) and POMHEX having EC50 values of 0.45 ± 0.10 and 0.61 ± 0.08 µM, respectively. These findings suggest that HEX is a promising lead against T. brucei and that further development of prodrug HEX analogs is warranted.

4.
bioRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37214825

ABSTRACT

Tumor angiogenesis is a cancer hallmark, and its therapeutic inhibition has provided meaningful, albeit limited, clinical benefit. While anti-angiogenesis inhibitors deprive the tumor of oxygen and essential nutrients, cancer cells activate metabolic adaptations to diminish therapeutic response. Despite these adaptations, angiogenesis inhibition incurs extensive metabolic stress, prompting us to consider such metabolic stress as an induced vulnerability to therapies targeting cancer metabolism. Metabolomic profiling of angiogenesis-inhibited intracranial xenografts showed universal decrease in tricarboxylic acid cycle intermediates, corroborating a state of anaplerotic nutrient deficit or stress. Accordingly, we show strong synergy between angiogenesis inhibitors (Avastin, Tivozanib) and inhibitors of glycolysis or oxidative phosphorylation through exacerbation of anaplerotic nutrient stress in intracranial orthotopic xenografted gliomas. Our findings were recapitulated in GBM xenografts that do not have genetically predisposed metabolic vulnerabilities at baseline. Thus, our findings cement the central importance of the tricarboxylic acid cycle as the nexus of metabolic vulnerabilities and suggest clinical path hypothesis combining angiogenesis inhibitors with pharmacological cancer interventions targeting tumor metabolism for GBM tumors.

5.
Viruses ; 15(3)2023 03 09.
Article in English | MEDLINE | ID: mdl-36992418

ABSTRACT

OBJECTIVES: The objective of this prospective study was to investigate the role of adaptive immunity in response to SARS-CoV-2 vaccines. DESIGN AND METHODS: A cohort of 677 vaccinated individuals participated in a comprehensive survey of their vaccination status and associated side effects, and donated blood to evaluate their adaptive immune responses by neutralizing antibody (NAb) and T cell responses. The cohort then completed a follow-up survey to investigate the occurrence of breakthrough infections. RESULTS: NAb levels were the highest in participants vaccinated with Moderna, followed by Pfizer and Johnson & Johnson. NAb levels decreased with time after vaccination with Pfizer and Johnson & Johnson. T cell responses showed no significant difference among the different vaccines and remained stable up to 10 months after the study period for all vaccine types. In multivariate analyses, NAb responses (<95 U/mL) predicted breakthrough infection, whereas previous infection, the type of vaccine, and T cell responses did not. T cell responses to viral epitopes (<0.120 IU/mL) showed a significant association with the self-reported severity of COVID-19 disease. CONCLUSION: This study provides evidence that NAb responses to SARS-CoV-2 vaccination correlate with protection against infection, whereas the T cell memory responses may contribute to protection against severe disease but not against infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Self Report , Breakthrough Infections , Prospective Studies , Patient Acuity , Antibodies, Neutralizing , Vaccination , Antibodies, Viral
7.
ACS Pharmacol Transl Sci ; 6(2): 245-252, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798479

ABSTRACT

Metabolically labile prodrugs can experience stark differences in catabolism incurred by the chosen route of administration. This is especially true for phosph(on)ate prodrugs, in which successive promoiety removal transforms a lipophilic molecule into increasingly polar compounds. We previously described a phosphonate inhibitor of enolase (HEX) and its bis-pivaloyloxymethyl ester prodrug (POMHEX) capable of eliciting strong tumor regression in a murine model of enolase 1 (ENO1)-deleted glioblastoma following parenteral administration. Here, we characterize the pharmacokinetics and pharmacodynamics of these enolase inhibitors in vitro and in vivo after oral and parenteral administration. In support of the historical function of lipophilic prodrugs, the bis-POM prodrug significantly improves cell permeability of and rapid hydrolysis to the parent phosphonate, resulting in rapid intracellular loading of peripheral blood mononuclear cells in vitro and in vivo. We observe the influence of intracellular trapping in vivo on divergent pharmacokinetic profiles of POMHEX and its metabolites after oral and parenteral administration. This is a clear demonstration of the tissue reservoir effect hypothesized to explain phosph(on)ate prodrug pharmacokinetics but has heretofore not been explicitly demonstrated.

8.
Methods Mol Biol ; 2563: 413-424, 2023.
Article in English | MEDLINE | ID: mdl-36227486

ABSTRACT

Biomolecular condensation has emerged as a key organizing principle governing the formation of membraneless cellular assemblies. Revealing the mechanism of formation of biomolecular condensates requires the quantitative examination of their growth kinetics. Here, we introduce mass balance imaging (MBI) as a general method to study compositional growth dynamics based on fluorescent images of multicomponent clusters. MBI allows the visualization and measurement of composition-dependent growth rates of biomolecular condensates and other assemblies. We provide a computational pipeline and demonstrate the applicability of our method by investigating cortical assemblies containing N-WASP (WSP-1) and F-actin that appear during oocyte cortex activation in C. elegans. In general, the method can be broadly implemented to identify interactions that underlie growth kinetics of multicomponent assemblies in vivo and in vitro.


Subject(s)
Actins , Organelles , Animals , Biomolecular Condensates , Caenorhabditis elegans , Kinetics
10.
Electrophoresis ; 44(1-2): 217-245, 2023 01.
Article in English | MEDLINE | ID: mdl-35977346

ABSTRACT

The use of microfluidic devices is highly attractive in the field of biomedical and clinical assessments, as their portability and fast response time have become crucial in providing opportune therapeutic treatments to patients. The applications of microfluidics in clinical diagnosis and point-of-care devices are continuously growing. The present review article discusses three main fields where miniaturized devices are successfully employed in clinical applications. The quantification of ions, sugars, and small metabolites is examined considering the analysis of bodily fluids samples and the quantification of this type of analytes employing real-time wearable devices. The discussion covers the level of maturity that the devices have reached as well as cost-effectiveness. The analysis of proteins with clinical relevance is presented and organized by the function of the proteins. The last section covers devices that can perform single-cell metabolomic and proteomic assessments. Each section discusses several strategically selected recent reports on microfluidic devices successfully employed for clinical assessments, to provide the reader with a wide overview of the plethora of novel systems and microdevices developed in the last 5 years. In each section, the novel aspects and main contributions of each reviewed report are highlighted. Finally, the conclusions and future outlook section present a summary and speculate on the future direction of the field of miniaturized devices for clinical applications.


Subject(s)
Microfluidic Analytical Techniques , Wearable Electronic Devices , Humans , Microfluidics , Proteomics , Point-of-Care Systems , Lab-On-A-Chip Devices
11.
Viruses ; 14(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36366527

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal disease of cats that currently lacks licensed and affordable vaccines or antiviral therapeutics. The disease has a spectrum of clinical presentations including an effusive ("wet") form and non-effusive ("dry") form, both of which may be complicated by neurologic or ocular involvement. The feline coronavirus (FCoV) biotype, termed feline infectious peritonitis virus (FIPV), is the etiologic agent of FIP. The objective of this study was to determine and compare the in vitro antiviral efficacies of the viral protease inhibitors GC376 and nirmatrelvir and the nucleoside analogs remdesivir (RDV), GS-441524, molnupiravir (MPV; EIDD-2801), and ß-D-N4-hydroxycytidine (NHC; EIDD-1931). These antiviral agents were functionally evaluated using an optimized in vitro bioassay system. Antivirals were assessed as monotherapies against FIPV serotypes I and II and as combined anticoronaviral therapies (CACT) against FIPV serotype II, which provided evidence for synergy for selected combinations. We also determined the pharmacokinetic properties of MPV, GS-441524, and RDV after oral administration to cats in vivo as well as after intravenous administration of RDV. We established that orally administered MPV at 10 mg/kg, GS-441524 and RDV at 25 mg/kg, and intravenously administered RDV at 7 mg/kg achieves plasma levels greater than the established corresponding EC50 values, which are sustained over 24 h for GS-441514 and RDV.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Assay
12.
J Med Chem ; 65(20): 13813-13832, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36251833

ABSTRACT

Cancers harboring homozygous deletion of the glycolytic enzyme enolase 1 (ENO1) are selectively vulnerable to inhibition of the paralogous isoform, enolase 2 (ENO2). A previous work described the sustained tumor regression activities of a substrate-competitive phosphonate inhibitor of ENO2, 1-hydroxy-2-oxopiperidin-3-yl phosphonate (HEX) (5), and its bis-pivaloyoxymethyl prodrug, POMHEX (6), in an ENO1-deleted intracranial orthotopic xenograft model of glioblastoma [Nature Metabolism 2020, 2, 1423-1426]. Due to poor pharmacokinetics of bis-ester prodrugs, this study was undertaken to identify potential non-esterase prodrugs for further development. Whereas phosphonoamidate esters were efficiently bioactivated in ENO1-deleted glioma cells, McGuigan prodrugs were not. Other strategies, including cycloSal and lipid prodrugs of 5, exhibited low micromolar IC50 values in ENO1-deleted glioma cells and improved stability in human serum over 6. The activity of select prodrugs was also probed using the NCI-60 cell line screen, supporting its use to examine the relationship between prodrugs and cell line-dependent bioactivation.


Subject(s)
Glioblastoma , Glioma , Organophosphonates , Prodrugs , Humans , Prodrugs/therapeutic use , Prodrugs/pharmacokinetics , Organophosphonates/pharmacology , Homozygote , Sequence Deletion , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Glioblastoma/drug therapy , Esters , Lipids , DNA-Binding Proteins , Biomarkers, Tumor , Tumor Suppressor Proteins/genetics
13.
Nature ; 609(7927): 597-604, 2022 09.
Article in English | MEDLINE | ID: mdl-35978196

ABSTRACT

A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.


Subject(s)
Actomyosin , Biomolecular Condensates , Caenorhabditis elegans , Oocytes , Actin Cytoskeleton/metabolism , Actin-Related Protein 2/metabolism , Actin-Related Protein 3/metabolism , Actins/metabolism , Actomyosin/chemistry , Actomyosin/metabolism , Animals , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Caenorhabditis elegans/embryology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Emulsions/chemistry , Emulsions/metabolism , Oocytes/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
14.
Anal Chem ; 94(28): 10045-10053, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35792073

ABSTRACT

The phosphonate group is a key pharmacophore in many antiviral, antimicrobial, and antineoplastic drugs. Due to its high polarity and short retention time, detecting and quantifying such phosphonate-containing drugs with LC/MS-based methods are challenging and require derivatization with hazardous reagents. Given the emerging importance of phosphonate-containing drugs, developing a practical, accessible, and safe method for their quantitation in pharmacokinetics (PK) studies is desirable. NMR-based methods are often employed in drug discovery but are seldom used for compound quantitation in PK studies. Here, we show that proton-phosphorous (1H-31P) heteronuclear single quantum correlation (HSQC) NMR allows for the quantitation of the phosphonate-containing enolase inhibitor HEX in plasma and tissues at micromolar concentrations. Although mice were shown to rapidly clear HEX from circulation (over 95% in <1 h), the plasma half-life of HEX was more than 1 h in rats and nonhuman primates. This slower clearance rate affords a significantly higher exposure of HEX in rat models compared to that in mouse models while maintaining a favorable safety profile. Similar results were observed for the phosphonate-containing antibiotic, fosfomycin. Our study demonstrates the applicability of the 1H-31P HSQC method to quantify phosphonate-containing drugs in complex biological samples and illustrates an important limitation of mice as preclinical model species for phosphonate-containing drugs.


Subject(s)
Antineoplastic Agents , Organophosphonates , Animals , Antineoplastic Agents/pharmacokinetics , Antiviral Agents , Mice , Organophosphonates/chemistry , Primates , Protons , Rats
15.
Endocr Pract ; 28(7): 684-689, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35487459

ABSTRACT

INTRODUCTION: The accurate interpretation of the cosyntropin (adrenocorticotropic hormone [ACTH]) stimulation test requires method- and assay-specific cutoffs of the level of cortisol. Compared with a historical cutoff (18 µg/dL) for polyclonal antibody-based immunoassays, lower thresholds were proposed for the Roche Elecsys II assay, which uses a monoclonal antibody. However, cutoffs for other commonly adopted, monoclonal antibody-based cortisol assays were not yet available. Here, we established the thresholds for the level of cortisol specific to the Abbott Architect immunoassay by comparing the measurements of the level of cortisol using 3 immunoassays. METHODS: The ACTH stimulation test was performed in patients with suspected adrenal insufficiency (n = 50). The serum cortisol level was measured using the Abbott Architect, Roche Elecsys II, and Siemens Centaur assays. The results of the Abbott assay were also compared with those of liquid chromatography-tandem mass spectrometry. The receiver operating characteristic analysis was performed to derive new diagnostic thresholds for the Abbott assay using the polyclonal antibody-based Siemens assay as the reference method. RESULTS: The concentrations of cortisol measured using the Abbott assay were similar to those measured using liquid chromatography-tandem mass spectrometry and the Roche Elecsys II assay but significantly lower than those measured using the Siemens assay. The optimized threshold for cortisol using the Abbott assay was 14.6 µg/dL at 60 minutes after stimulation (sensitivity, 92%; specificity, 96%) and 13.2 µg/dL at 30 minutes after stimulation (sensitivity, 100%; specificity, 89%). CONCLUSION: We recommend a threshold of 14.6 µg/dL for the level of cortisol at 60 minutes after ACTH stimulation for the Abbott assay. In comparison with the historical threshold of 18 µg/dL, the application of the new cutoff may significantly decrease false-positive results due to ACTH stimulation testing. The use of assay-specific cutoffs will be essential for reducing misclassification and overtreatment in patients with suspected adrenal insufficiency.


Subject(s)
Adrenal Insufficiency , Cosyntropin , Adrenal Insufficiency/diagnosis , Adrenocorticotropic Hormone , Antibodies, Monoclonal , Humans , Hydrocortisone , Immunoassay/methods
16.
ACS Med Chem Lett ; 13(4): 520-523, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35450350

ABSTRACT

Remdesivir (GS-5734) is a monophenol, 2-ethylbutylalanine phosphoramidate prodrug of GS-441524 that is FDA-approved for the treatment of patients hospitalized for COVID-19. Despite showing strong, broad-spectrum antiviral activity in preclinical models, the clinical efficacy of remdesivir is mixed. This work highlights the pharmacodynamic discordance of remdesivir between humans and non-human primates, thereby demonstrating that non-human primate disease models overestimate the therapeutic efficacy of phosphoramidate prodrugs.

17.
Cell Metab ; 33(12): 2380-2397.e9, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879239

ABSTRACT

Accelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis. Notably, NEAT1 is upregulated in cancer patients and correlates with high levels of these complexes, and genetic and pharmacological blockade of penultimate glycolysis ablates NEAT1-dependent tumorigenesis. Finally, we demonstrate that Pinin mediates glucose-stimulated nuclear export of NEAT1, through which it exerts isoform-specific and paraspeckle-independent functions. These findings establish a direct role for NEAT1 in regulating tumor metabolism, provide new insights into the Warburg effect, and identify potential targets for therapy.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Mice , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
18.
Front Cell Infect Microbiol ; 11: 730413, 2021.
Article in English | MEDLINE | ID: mdl-34604112

ABSTRACT

Glycolysis controls cellular energy, redox balance, and biosynthesis. Antiglycolytic therapies are under investigation for treatment of obesity, cancer, aging, autoimmunity, and microbial diseases. Interrupting glycolysis is highly valued as a therapeutic strategy, because glycolytic disruption is generally tolerated in mammals. Unfortunately, anemia is a known dose-limiting side effect of these inhibitors and presents a major caveat to development of antiglycolytic therapies. We developed specific inhibitors of enolase - a critical enzyme in glycolysis - and validated their metabolic and cellular effects on human erythrocytes. Enolase inhibition increases erythrocyte susceptibility to oxidative damage and induces rapid and premature erythrocyte senescence, rather than direct hemolysis. We apply our model of red cell toxicity to address questions regarding erythrocyte glycolytic disruption in the context of Plasmodium falciparum malaria pathogenesis. Our study provides a framework for understanding red blood cell homeostasis under normal and disease states and clarifies the importance of erythrocyte reductive capacity in malaria parasite growth.


Subject(s)
Antimalarials , Malaria, Falciparum , Animals , Antimalarials/pharmacology , Erythrocytes , Glycolysis , Humans , Plasmodium falciparum
20.
Antimicrob Agents Chemother ; 65(10): e0111721, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34252308

ABSTRACT

Remdesivir is a nucleoside monophosphoramidate prodrug that has been FDA approved for coronavirus disease 2019 (COVID-19). However, the clinical efficacy of remdesivir for COVID-19 remains contentious, as several trials have not found statistically significant differences in either time to clinical improvement or mortality between remdesivir-treated and control groups. Similarly, the inability of remdesivir to provide a clinically significant benefit above other investigational agents in patients with Ebola contrasts with strong, curative preclinical data generated in rhesus macaque models. For both COVID-19 and Ebola, significant discordance between the robust preclinical data and remdesivir's lackluster clinical performance have left many puzzled. Here, we critically evaluate the assumptions of the models underlying remdesivir's promising preclinical data and show that such assumptions overpredict efficacy and minimize toxicity of remdesivir in humans. Had the limitations of in vitro drug efficacy testing and species differences in drug metabolism been considered, the underwhelming clinical performance of remdesivir for both COVID-19 and Ebola would have been fully anticipated.


Subject(s)
COVID-19 Drug Treatment , Hemorrhagic Fever, Ebola , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Humans , Macaca mulatta , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...