Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Yi Chuan ; 41(1): 66-75, 2019 Jan 20.
Article in Chinese | MEDLINE | ID: mdl-30686786

ABSTRACT

The LMNA gene encodes the nuclear Lamin A and Lamin C proteins, and is related to nuclear membrane organization, genome stability and cell differentiation. Abnormal expression of LMNA is ubiquitous in human tumors, and its mutation leads to various forms of laminopathies, including Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), and Hutchinson-Gliford progeria syndrome (HGPS). To further determine the functions of the LMNA gene in cellular physiology, the present study used the CRISPR/Cas9 technique to edit the LMNA gene of 293T and HepG2 cells in vitro, which resulted in two stable LMNA gene knockout (LMNA KO) cell lines. Compared to the respective wild type cells, the LMNA KO cell lines showed decrease in proliferation ability, increase in apoptosis, alteration in cellular morphology and uneven structures in the nucleus membrane. In this study, we report for the first time the results on the construction of LMNA KO immortalized cell lines and characterization of their morphological changes, thereby laying the foundation for the further studies of the LMNA gene functions and pathogenic mutations.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques , Lamin Type A/genetics , Cell Nucleus , HEK293 Cells , Hep G2 Cells , Humans , Mutation
2.
Am J Transl Res ; 11(12): 7538-7554, 2019.
Article in English | MEDLINE | ID: mdl-31934299

ABSTRACT

Osteosarcoma (OS) is a primary bone tumor with a high incidence and mortality in children and adolescents. Emerging evidence shows that microRNAs (miRNAs) participate in biological tumor mechanisms by targeting downstream messenger RNAs (mRNAs). This article aimed to investigate the potential regulatory targets of microRNA-199a-3p (miR-199a-3p) in OS and to contribute to the understanding of miR-199a-3p-related OS regulatory mechanisms. MicroRNA-related Gene Expression Omnibus (GEO) chips, ArrayExpress chips and literature data were used to determine the expression of miR-199a-3p in OS and pooled to explore its potential clinical value. To investigate the target genes of miR-199a-3p further, we integrated the results from the following three-part gene study: Twelve online prediction tools were used to predict the target genes of miR-199a-3p; the GEO GSE89370 chip transfected with miRSelect pEP-miR-199a-3p was used to analyze the downregulated differentially expressed genes (DEGs) in OS cells; and highly expressed DEGs were derived from an in-house microarray generated from three pairs of clinical OS and normal tissue samples acquired through our department. Then, we analyzed the target genes using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases and the protein-protein interaction (PPI) network to further identify the primary target genes. In addition, we constructed transcription factor (TF)-miRNA-joint gene feed-forward regulatory loops (FFLs) with Circuits DB using miR-199a-3p as the core. A comprehensive meta-analysis of a hub of miR-199a-3p targeted genes was performed to integrate expression level, summary ROC (sROC) curves and survival analysis results from the GEO data for verification and exploration. Finally, the expression levels of the hub genes were verified in OS tissues and U2OS cells by immunohistochemistry (IHC) and immunocytochemistry (ICC). Data on miR-199a-3p expression were obtained from three data sets (GSE65071, GSE69524, and PMID 21666078), which showed low miR-199a-3p expression levels in OS tissues. The combined data indicated the same tendency, with the SMD of the random effect model, as shown in forest plots, being -2.8 (95% CI: -4.49, -1.11). In addition, we determined that miR-199a-3p may serve as a molecular marker useful for distinguishing OS tissues from normal tissues with high sensitivity and specificity, with the measured outcomes being 0.94 (95% CI: 0.80, 0.99) and 0.96 (95% CI: 0.78, 1.00), respectively. In addition, 391 genes were considered targets of miR-199a-3p in OS, and the enrichment analysis indicated that these targets were mainly enriched in proteoglycans in cancer and in spliceosomes. Four genes, CDKI, CCNB1, AURKA and NEK2, were regarded as hub targets based on the PPI data. Subsequently, TF-miRNA-joint genes FFLs were constructed in Circuits DB and included 17 TFs and 82 joint targets. These joint targets were mainly enriched in spliceosomes. UBE2D1 and RBM25 were regarded as hub joint targets based on the enrichment analysis. All selected target genes were further verified to ensure that they were upregulated in OS and to determine their prognostic significance. At the experimental verification level, the CDK1 protein was confirmed to be positively expressed in the cytoplasm of OS tissues and the U2OS cell line. Our study verified that miR-199a-3p was obviously downregulated in OS. CDK1, CCNB1, NEK2, AURKA, UBE2D1 and RBM25 were identified as potential target genes of miR-199a-3p in OS.

SELECTION OF CITATIONS
SEARCH DETAIL
...