Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 68(11): e2400090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757671

ABSTRACT

SCOPE: Depression, a prevalent mental disorder, has significantly impacted the lives of 350 million people, yet it holds promise for amelioration through food-derived phenolics. Raspberries, renowned globally for their delectable flavor, harbor a phenolic compound known as raspberry ketone (RK). However, the impact of RK on depressive symptoms remains ambiguous. This study aims to investigate the impact of RK on lipopolysaccharide (LPS)-induced depressed mice and elucidates its potential mechanisms, focusing on the gut-brain axis. METHODS AND RESULTS: Through behavioral tests, RK exerts a notable preventive effect on LPS-induced depression-like behaviors in mice. RK proves capable of attenuating gut inflammation, repairing gut barrier impairment, modulating the composition of the gut microbiome (Muribaculaceae, Streptococcus, Lachnospiraceae, and Akkermansia), and promoting the production of short-chain fatty acids. Furthermore, RK alleviates neuroinflammation by suppressing the TLR-4/NF-κB pathway and bolsters synaptic function by elevating levels of neurotrophic factors and synapse-associated proteins. CONCLUSION: The current study provides compelling evidence that RK effectively inhibits the TLR-4/NF-κB pathway via the gut-brain axis, leading to the improvement of LPS-induced depression-like behaviors in mice. This study addresses the research gap in understanding the antidepressant effects of RK and illuminates the potential of utilizing RK as a functional food for preventing depression.


Subject(s)
Brain-Gut Axis , Depression , Gastrointestinal Microbiome , Lipopolysaccharides , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/toxicity , NF-kappa B/metabolism , Depression/drug therapy , Gastrointestinal Microbiome/drug effects , Signal Transduction/drug effects , Male , Mice , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Butanones/pharmacology , Mice, Inbred C57BL , Behavior, Animal/drug effects , Antidepressive Agents/pharmacology
2.
Cancer Lett ; 563: 216184, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37088328

ABSTRACT

Despite of the high lethality of gallbladder cancer (GBC), little is known regarding molecular regulation of the tumor immunosuppressive microenvironment. Here, we determined tumor expression levels of YKL-40 and the molecular mechanisms by which YKL-40 regulates escape of anti-tumor immune surveillance. We found that elevated expression levels of YKL-40 in plasma and tissue were correlated with tumor size, stage IV and lymph node metastasis. Single cell transcriptome analysis revealed that YKL-40 was predominantly derived from M2-like subtype of infiltrating macrophages. Blockade of M2-like macrophage differentiation of THP-1 cells with YKL-40 shRNA resulted in reprogramming to M1-like macrophages and restricting tumor development. YKL-40 induced tumor cell expression and secretion of growth differentiation factor 15 (GDF15), thus coordinating to promote PD-L1 expression mediated by PI3K, AKT and/or Erk activation. Interestingly, extracellular GDF15 inhibited intracellular expression of GDF15 that suppressed PD-L1 expression. Thus, YKL-40 disrupted the balance of pro- and anti-PD-L1 regulation to enhance expression of PD-L1 and inhibition of T cell cytotoxicity, leading to tumor immune evasion. The data suggest that YKL-40 and GDF15 could serve as diagnostic biomarkers and immunotherapeutic targets for GBC.


Subject(s)
Gallbladder Neoplasms , Humans , B7-H1 Antigen , Cell Line, Tumor , Chitinase-3-Like Protein 1/metabolism , Gallbladder Neoplasms/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Macrophages/metabolism , Tumor Escape , Tumor Microenvironment
3.
Front Oncol ; 12: 994087, 2022.
Article in English | MEDLINE | ID: mdl-36387215

ABSTRACT

Background: Although a plethora of studies have employed multiple gallbladder cancer (GBC) cell lines, it is surprisingly noted that there is still lack of a normal gallbladder epithelial cell line as a normal counterpart, thus impeding substantially the progress of mechanistic studies on the transformation of normal epithelial cells to cancer. Here, we created a normal gallbladder epithelial cell line named L-2F7 from human gallbladder tissue. Methods: Gallbladder tissues from a diagnosed cholecystitis female patient were collected, and epithelial cells were enriched by magnetic cell sorting. Then, the cells were immortalized by co-introduction of human telomerase reverse transcriptase (hTERT) and Simian virus 40 large T antigen (LT-SV40) via a lentivirus infection system. After clonal selection and isolation, L-2F7 cells were tested for epithelial markers CK7, CK19, CK20, and CD326, genomic feature, cell proliferation, and migration using Western blot, immunofluorescence, whole genome sequencing, karyotyping, and RNA sequencing. L-2F7 cells were also transplanted to Nude (nu/nu) mice to determine tumorigenicity. Results: We successfully identified one single-cell clone named L-2F7 which highly expressed epithelial markers CD326, CK7, CK19, and CK20. This cell line proliferated with a doubling time of 23 h and the epithelial morphology sustained over 30 passages following immortalization. Transient gene transduction of L-2F7 cells led to expression of exogenous GFP and FLAG protein. L-2F7 cells exhibited both distinct non-synonymous mutations from those of gallbladder cancer tissues and differential non-cancerous gene expression patterns similar to normal tissue. Although they displayed unexpected mobility, L-2F7 cells still lacked the ability to develop tumors. Conclusion: We developed a non-cancerous gallbladder epithelial cell line, offering a valuable system for the study of gallbladder cancer and other gallbladder-related disorders.

4.
J Nanosci Nanotechnol ; 20(10): 6441-6449, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32384996

ABSTRACT

As an Mn+1AXn phase ternary layered carbide, Ti3SiC2 possesses the advantages of both excellent stability and high electrical conductivity, which are considered to be promising electrode materials for supercapacitors. Ti3SiC2/Carbon nanofiber composites with one-dimensional nanostructures were successfully synthesized via electrospinning. Systematic electrochemical tests showed that the Ti3SiC2/Carbon composite possesses a large specific capacitance of 133.1 F/g at the current density of 1 A/g, high rate capability of 113.7% capacitance retention from 1 to 10 A/g, and low resistance of 1.07 Ω. After assembling the asymmetrical supercapacitor, Ti3SiC2/Carbon provides the energy density of 7.02 Wh/kg at the power density of 140 W/kg. In addition, Ti3SiC2/Carbon composite is highly stable, with 74.6% capacity retention after 4000 cycles. Ti3SiC2/Carbon's superior electrochemical properties are ascribed to the 1D nanowire structure and the high specific surface area. Ti3SiC2/Carbon is a prospective electrode material for future supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...