Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999717

ABSTRACT

Understanding the ecological dynamics of forest ecosystems, particularly the influence of forest age structure on soil carbon (C), nitrogen (N), and phosphorus (P) content, is crucial for effective forest management and conservation. This study aimed to investigate the nutrient storage and ecological stoichiometry across different-aged stands of Chinese fir forests. Soil samples were collected from various depths (0-15 cm, 15-30 cm, and 30-45 cm) across four age groups of Chinese fir forests (8-year-old, 12-year-old, 20-year-old, and 25-year-old) in the Forest Farm, Pingjiang County, China. Soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) were measured, and their stoichiometries were calculated. The results showed that both individual tree biomass and stand biomass, along with SOC, TN, and TP content, increased with stand age, highlighting the significant importance of stand age on biomass production and nutrient accumulation in forests. Specifically, soil C and P contents significantly increased as the forest aged, while variation in N content was relatively minor. Soil C/N and C/P ratios exhibited variation corresponding to forest age, suggesting alterations in the ecological stoichiometry characteristics of the forests over time. These findings are crucial for understanding the dynamics of ecosystem functioning and nutrient cycling within Chinese fir forests and provide a solid scientific basis for the effective management and conservation of these vital forest ecosystems.

2.
ACS Omega ; 9(28): 30794-30803, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035895

ABSTRACT

Imbibition of fracturing fluid in deep shale nanopores has a significant effect on shale gas production. One of the key parameters affecting imbibition is the interfacial tension of the methane-water system. However, studies on the methane-water interfacial tension in nanopores are very limited, and obtaining the accurate value of the methane-water interfacial tension at the nanoscale is difficult and time-consuming. In this work, a dissipative particle dynamics simulation model was built to study the methane-water interfacial tension in nanopores. This model provides reliable access to methane-water interfacial tension for deep shales under high-temperature, high-pressure conditions at low computation cost. It can be easily used to compute the methane-water interfacial tension in nanopores or the confined space in wide application scenarios. A sensitivity study of methane-water interfacial tension on a variety of factors was conducted. Results demonstrate that under high-pressure conditions, the increase in pressure leads to the rise of interfacial tension. When pressure increases from 20 to 120 MPa, interfacial tension rises from 0.0275 to 0.12 N/m, which contributes to the severe imbibition of fracturing fluid in deep shales. The confinement effect was observed by investigating the influence of pore size. Interfacial tension almost remains unchanged in pores smaller than 7 nm because most of the confined space is occupied by interface layer molecules in these pores. When pore size increases from 7 to 15 nm, the confinement effect is reduced. The interfacial tension experiences a growth from 0.1155 to 0.27 mN/m. Compared with pressure and pore size, the effect of temperature on interfacial tension can be neglected during deep shale gas production.

3.
Sci Total Environ ; 935: 173322, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38777072

ABSTRACT

The swift proliferation of forests converted into monoculture plantations has profound impacts on soil nutrients, microbial communities, and many ecological processes and functions. Nematodes are soil microfauna that play a pivotal role in biogeochemical cycling and in soil food web, whereas the response of soil nematode communities and energy flows to forest conversion remains unknown. Here, we assessed the community composition and the energy flows of the nematode food webs as a function of soil chemistry after conversion from natural forests (Forest) to four plantations (8-year-old): Amygdalus persica (Peach), Myrica rubra (Berry), Camellia oleifera (Oil), and Cunninghamia lanceolata (Fir). After forest conversion, soil organic carbon (SOC) and total nitrogen (TN) contents decreased by 65 % and 55 %, respectively. Forest conversion strongly reduced the abundance (particularly large-bodied omnivorous-predatory nematodes), diversity, maturity, and stability of the soil nematode community. The shifts in composition and structure of nematode communities after forest conversion are reflected in changes in the abundance of predominant genera and trophic taxa, especially bacterivorous, fungivorous, and omnivorous-predatory nematodes. Acrobeloides notably increased, whereas Plectus, Prismatolaimus, Tylencholaimus, and Tripyla decreased. Accordingly, the abundances of r-strategy nematodes (cp value = 1-2) increased, but that of the K-strategists (cp value = 3-5) declined. Additionally, the energy flow across the soil nematode food web was reduced by 36 % and flow uniformity declined by 24 % after forest conversion. These changes in nematode diversity and abundance were triggered by diminishing soil C and N contents, thereby affecting the energy flows via the nematode food webs. Thus, forest conversion affects soil biotas and multi-functions from the perspective of nematode food web structure and energy flows, and underlines the interconnections between ecosystem and energy dynamics across multi-trophic levels, which is crucial for sustainable forest management.


Subject(s)
Carbon , Food Chain , Forests , Nematoda , Nitrogen , Soil , Nematoda/physiology , Animals , Soil/chemistry , Nitrogen/analysis , Carbon/analysis
4.
Sci Total Environ ; 927: 172171, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575035

ABSTRACT

Rocky desertification is one of the most ecological problems in the karst context. Although extensive research has been conducted to explore how to restore and protect, the responses of soil fungi and archaea to rocky desertification succession remain limited. Here, four grades of rocky desertification in a karst ecosystem were selected, amplicon sequencing analysis was conducted to investigate fungal and archaeal community adaptation in response to rocky desertification succession. Our findings revealed that the diversity and community structure of fungi and archaea in soils declined with the aggravation of rocky desertification. As the rocky desertification succession intensified, microbial interactions shifted from cooperation to competition. Microbial survival strategies were K-strategist and r-strategist dominated in the early and late stages of succession, respectively. Additionally, the driving factors affecting microorganisms have shifted from vegetation diversity to soil properties as the intensification of rocky desertification. Collectively, our study highlighted that plant diversity and soil properties play important roles on soil microbiomes in fragile karst ecosystems and that environmental factors induced by human activities might still be the dominant factor exacerbating rocky desertification, which could significantly enrich our understanding of microbial ecology within karst ecosystems.


Subject(s)
Fungi , Microbiota , Soil Microbiology , Soil , Soil/chemistry , Archaea/genetics , Archaea/physiology , Ecosystem , Conservation of Natural Resources
5.
J Med Internet Res ; 26: e50012, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373031

ABSTRACT

BACKGROUND: With the advent of a new era for health and medical treatment, characterized by the integration of mobile technology, a significant digital divide has surfaced, particularly in the engagement of older individuals with mobile health (mHealth). The health of a family is intricately connected to the well-being of its members, and the use of media plays a crucial role in facilitating mHealth care. Therefore, it is important to examine the mediating role of media use behavior in the connection between the family health of older individuals and their inclination to use mHealth devices. OBJECTIVE: This study aims to investigate the impact of family health and media use behavior on the intention of older individuals to use mHealth devices in China. The study aims to delve into the intricate dynamics to determine whether media use behavior serves as a mediator in the relationship between family health and the intention to use mHealth devices among older adults. The ultimate goal is to offer well-founded and practical recommendations to assist older individuals in overcoming the digital divide. METHODS: The study used data from 3712 individuals aged 60 and above, sourced from the 2022 Psychology and Behavior Investigation of Chinese Residents study. Linear regression models were used to assess the relationships between family health, media use behavior, and the intention to use mHealth devices. To investigate the mediating role of media use behavior, we used the Sobel-Goodman Mediation Test. This analysis focused on the connection between 4 dimensions of family health and the intention to use mHealth devices. RESULTS: A positive correlation was observed among family health, media use behavior, and the intention to use mHealth devices (r=0.077-0.178, P<.001). Notably, media use behavior was identified as a partial mediator in the relationship between the overall score of family health and the intention to use mHealth devices, as indicated by the Sobel test (z=5.451, P<.001). Subgroup analysis further indicated that a complete mediating effect was observed specifically between family health resources and the intention to use mHealth devices in older individuals with varying education levels. CONCLUSIONS: The study revealed the significance of family health and media use behavior in motivating older adults to adopt mHealth devices. Media use behavior was identified as a mediator in the connection between family health and the intention to use mHealth devices, with more intricate dynamics observed among older adults with lower education levels. Going forward, the critical role of home health resources must be maximized, such as initiatives to develop digital education tailored for older adults and the creation of media products specifically designed for them. These measures aim to alleviate technological challenges associated with using media devices among older adults, ultimately bolstering their inclination to adopt mHealth devices.


Subject(s)
Asian People , Family Health , Intention , Telemedicine , Aged , Humans , Cross-Sectional Studies , Telemedicine/instrumentation , Telemedicine/methods
6.
Sci Total Environ ; 922: 171265, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417516

ABSTRACT

The role of agricultural versus vehicle emissions in urban atmospheric ammonia (NH3) remains unclear. The lockdown due to the outbreak of COVID-19 provided an opportunity to assess the role of source emissions on urban NH3. Concentrations and δ15N of aerosol ammonium (NH4+) were measured before (autumn in 2017) and during the lockdown (summer, autumn, and winter in 2020), and source contributions were quantified using SIAR. Despite the insignificant decrease in NH4+ concentrations, significantly lower δ15N-NH4+ was found in 2020 (0.6 ± 1.0‰ in PM2.5 and 1.4 ± 2.1‰ in PM10) than in 2017 (15.2 ± 6.7‰ in PM2.5), which indicates the NH3 from vehicle emissions has decreased by∼50% during the lockdown while other source emissions are less affected. Moreover, a reversed seasonal pattern of δ15N-NH4+ during the lockdown in Changsha has been revealed compared to previous urban studies, which can be explained by the dominant effect of non-fossil fuel emissions due to the reductions of vehicle emissions during the lockdown period. Our results highlight the effects of lockdown on aerosol δ15N-NH4+ and the importance of vehicle emissions to urban atmospheric NH3, providing conclusive evidence that reducing vehicle NH3 emissions could be an effective strategy to reduce PM2.5 in Chinese megacities.


Subject(s)
Air Pollutants , Ammonium Compounds , Ammonium Compounds/analysis , Nitrogen Isotopes/analysis , Vehicle Emissions , Air Pollutants/analysis , Environmental Monitoring , Respiratory Aerosols and Droplets , Ammonia/analysis , Particulate Matter/analysis , China
7.
J Hazard Mater ; 465: 133173, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38061126

ABSTRACT

Enzymatic degradation of plastic is an effective means of plastic recycling and pollution control. However, the strong chemical inertness of polypropylene plastic (PP) severely impedes its oxidative cleavage, making it resistant to degradation. In this study, based on sequence screening of Hidden Markov Model (HMM), a dioxygenase (HIS1) was identified and characterized to be effective in PP oxidation. Various kinds of PP products, including plastic films, microplastics, and disposable water cups or bags, were HIS1-degraded with cracks and holes on the surface. The hydrophobic binding was the primary force driving oxidative degradation in the specific cavity of HIS1. The discovery of HIS1 achieved a zero breakthrough in PP biodegradation, providing a promising candidate for the selection and evolution of degrading enzymes.


Subject(s)
Polypropylenes , Water Pollutants, Chemical , Polypropylenes/chemistry , Plastics/metabolism , Oxygenases , Microplastics , Biodegradation, Environmental , Water Pollutants, Chemical/analysis
8.
J Environ Manage ; 351: 119688, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064990

ABSTRACT

The field practices, including irrigation and fertilization, strongly affect greenhouse gas emissions and soil nutrient cycling from agriculture. Understanding the underlying mechanism of greenhouse gas emissions, soil nutrient cycling, and their impact factors (fungal diversity, network characteristics, soil pH, salt, and moisture) is essential for efficiently managing global greenhouse gas mitigation and agricultural production. By considering abundant and rare taxa, we determine the identities and relative importance of ecological processes that modulate the fungal communities and identify whether they are crucial contributors to soil nutrient cycling and greenhouse gas emissions. The research is based on a 4-year field fertigation experiment with low (300 kg/ha P2O5 with 150 kg/ha urea) and high (600 kg/ha P2O5 with 300 kg/ha urea) fertilization level and three irrigation levels, that is, low (200 mm), medium (300 mm), and high (400 mm). The α-diversity (richness and Shannon index) of fungal subcommunities was significantly higher under medium irrigation (300 mm) and low fertilization (300 kg/ha P2O5 with 150 kg/ha urea) than under other treatments. Intermediate irrigation with low fertilization treatment yielded the most significant higher multinutrient cycling index and the lowest CO2 and CH4 emissions. The null model indicated that abundant taxa are mainly regulated by stochastic processes (dispersal limitation), and rare taxa are mainly regulated by environmental selection, especially by soil salinity. The co-occurrence network of rare taxa explained the changes in the entire fungal network stability. The abundant taxa played vital roles in regulating soil nutrient status, owing to the stronger association between their network and multinutrient cycling index. Furthermore, we have confirmed that soil moisture and fungal network stability are crucial factors affecting greenhouse gas emissions. Together, these results provide a deep understanding of the mechanisms that reveal fungal community assembly and soil fungal-driven variations in nutrient status and network stability, link fungal network characteristics to ecosystem functions, and reveal the factors that influence greenhouse gas emissions.


Subject(s)
Greenhouse Gases , Mycobiome , Soil , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Ecosystem , Nitrous Oxide/analysis , Agriculture/methods , Urea , Fertilization , Methane/analysis , Fertilizers/analysis
9.
J Environ Manage ; 351: 119658, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056332

ABSTRACT

Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Soil/chemistry , Ecosystem , Quality Improvement , Soil Pollutants/chemistry , Metals , Charcoal/chemistry
10.
Plants (Basel) ; 12(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38140514

ABSTRACT

Purple soils are greatly representative of ecologically fragile soils in southern China, yet the impact of vegetation restoration processes on the nitrogen (N) availability in purple soil ecosystems is still unclear. In this study, the soil nutrient content, available N fractions (including microbial biomass N (MBN), ammonium N (NH4+-N), nitrate N (NO3--N), and total dissolved N (TDN)), and enzyme activities (including urease (URE), nitrate reductase (NR), and nitrite reductase (NIR)) involved in N mineralization and immobilization were investigated across the three vegetation-restoration measures: Camellia oleifera monoculture, Camellia oleifera ryegrass intercropping, and Camellia oleifera intercropping with weeds. The results showed that the Camellia oleifera monoculture mode considerably enhanced the accumulation and availability of soil N and modified the proportion of available N fractions in arable land situated on purple soil slopes, compared to the intercropping mode, the physical, chemical, and microbiological properties of soil demonstrated more pronounced effects due to the Camellia oleifera monoculture vegetation-restoration measures. However, soil nutrient loss is faster on set-aside land and in crop monocultures, and intercropping restoration measures are more beneficial for soil and water conservation under timely fertilization conditions. The soil URE, NR, and NIR activities and MBN content in the Camellia oleifera monoculture model were significantly higher than in the control check sample. Soil N transformation occurs through the combined influence of chemical and biological processes. The relationships between the activities of the three soil enzymes studied and the contents of various components of soil nutrients and effective N displayed significant differences. Notably, URE had a highly significant positive correlation with TOC. There is a strong positive correlation between NR and TN, NIR and TDN, NO3--N, and NH4+-N. Our findings suggest that vegetation restoration improved the soil N availability and its enzyme activities in purple soils, making an essential contribution to the restoration and sustainability of purple soil ecosystem functions.

11.
Int J Mol Sci ; 24(22)2023 11 07.
Article in English | MEDLINE | ID: mdl-38003235

ABSTRACT

The phytohormone gibberellic acids (GAs) play a crucial role in the processes of growth, organ development, and secondary metabolism. However, the mechanism of exogenous GA3 regulating the growth and flavonoid synthesis in Phellodendron chinense Schneid (P. chinense Schneid) seedlings remains unclear. In this study, the physicochemical properties, gene expression level, and secondary metabolite of P. chinense Schneid seedlings under GA3 treatment were investigated. The results showed that GA3 significantly improved the plant height, ground diameter, fresh weight, chlorophyll content, soluble substance content, superoxide dismutase, and peroxidase activities. This was accompanied by elevated relative expression levels of Pc(S)-GA2ox, Pc(S)-DELLA, Pc(S)-SAUR50, Pc(S)-PsaD, Pc(S)-Psb 27, Pc(S)-PGK, Pc(S)-CER3, and Pc(S)-FBA unigenes. Conversely, a notable reduction was observed in the carotenoid content, catalase activity and the relative expression abundances of Pc(S)-KAO, Pc(S)-GID1/2, and Pc(S)-GH 3.6 unigenes in leaves of P. chinense Schneid seedlings (p < 0.05). Furthermore, GA3 evidently decreased the contents of pinocembrin, pinobanksin, isosakuranetin, naringin, naringenin, (-)-epicatechin, tricetin, luteolin, and vitexin belonged to flavonoid in stem bark of P. chinense Schneid seedlings (p < 0.05). These results indicated that exogenous GA3 promoted growth through improving chlorophyll content and gene expression in photosynthesis and phytohormone signal pathway and inhibited flavonoid synthesis in P. chinense Schneid seedlings.


Subject(s)
Phellodendron , Plant Growth Regulators , Plant Growth Regulators/pharmacology , Phellodendron/genetics , Phellodendron/chemistry , Seedlings/genetics , Transcriptome , Flavonoids , Chlorophyll
12.
J Agric Food Chem ; 71(49): 19434-19444, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38014643

ABSTRACT

Tree-crop intercropping is of great significance in food security, land protection, and sustainable agriculture. However, the mechanisms of allelopathy between plant species during intercropping are still limited. This study focuses on the allelopathic effects in the intercropping between Camellia oleifera and Arachis hypogaea L. in southern China. We use different parts of the C. oleifera extract to evaluate their impact on peanut seed germination. The results showed that it has inhibitory effects on peanut germination and growth, with the fruit shell having the strongest inhibitory effect. Three main allelopathic substances affecting A. hypogaea germination and growth were identified using gas chromatography-mass spectrometry (GC-MS) analysis, namely, 2,4-di-tert-butylphenol, hexanal, and benzaldehyde. Transcriptomics and metabolomics analyses revealed their effects on glutathione metabolism pathways and specific gene expression. In summary, this study reveals the allelopathic interaction mechanism between C. oleifera and A. hypogaea, which helps to better understand the role of allelopathy in intercropping practices between trees and crops.


Subject(s)
Allelopathy , Arachis , Arachis/chemistry , Agriculture/methods , Germination , Crops, Agricultural
13.
Plants (Basel) ; 12(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37653848

ABSTRACT

Forests undergo a long-term development process from young to mature stages, yet the variations in soil nutrients, enzyme activities, microbial diversity, and community composition related to forest ages are still unclear. In this study, the characteristics of soil bacterial and fungal communities with their corresponding soil environmental factors in the young, middle, and mature stages (7, 15, and 25-year-old) of Chinese fir plantations (CFP) in the subtropical region of China were investigated in 2021. Results showed that the alpha diversity indices (Chao1 and Shannon) of soil bacteria and fungi were higher in 15 and 25-year-old stands than in 7-year-old stand of CFP, while the soil pH, soil water content, soil organic carbon, total nitrogen, total phosphorus, sucrase, urease, acid phosphatase, catalase, and microbial biomass carbon, nitrogen, and phosphorus showed higher in 7-year-old stand than other two stands of CFP. The nonmetric multidimensional scaling analysis revealed that the soil microbial species composition was significantly different in three stand ages of CFP. The redundancy and canonical correspondence analysis indicated that the soil urease and microbial biomass nitrogen were the main factors affecting soil bacterial and fungal species composition. Our findings suggested that soil microbial diversity and community structure were inconsistent with changes in soil nutrients and enzyme activities during CFP development, and enhancing stand nurturing and soil nutrient accumulation in the mid-development stage were beneficial to the sustainable management of CFP.

14.
Plants (Basel) ; 12(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687293

ABSTRACT

In order to explore the influences of rice straw mulching on soil fertility in agroforestry systems, the soil C and N contents and enzyme activities were investigated in a C. oleifera-cassia intercropping ecosystem in Central Southern China. Three straw mulching application treatments were set up in this study, in 2021, namely, straw powder mulching (SPM), straw segment mulching (SSM), and non-straw mulching as the control (CK). Soil samples were collected from three soil depths (0-10 cm,10-20 cm, and 20-40 cm) in each treatment on the 90th-day after the treatments. The soil organic carbon (SOC), total nitrogen (TN), microbial carbon (MBC), soil enzyme activities (including acid phosphatase (ACP), urease (UE), cellulase (CL), and peroxidase (POD)), and soil water content (SWC) were determined. The results showed that the SOC significantly increased due to the mulching application in SPM and SSM, in the topsoil of 0-10 cm when compared to the CK. The SWC, SOC, TN, and MBC increased by 0.8 and 56.5, 3.5 and 37.5, 21.3 and 61.6, and 5.8% and 76.8% in the SPM and SSM treatments compared to the CK, respectively. The soil enzyme activities of ACP, UE, CE, and POD increased significantly due to straw mulching compared with CK throughout all soil layers. The soil enzyme activities of CL and POD were significantly higher in SSM than in SPM across the soil depth except for ACP. The enzyme activities of ACP were 14,190, 12,732, and 6490 U/g in SSM, SPM, and control, respectively. This indicated that mulching application enhanced the enzyme activity of ACP. Mulching had no significant effects on UE and CL, while the POD decreased significantly in the order of SPM > SSM > CK across all soil layers, being, on average, 6.64% and 3.14% higher in SSM and SPM, respectively, compared to the CK plots. The SOC and MBC were the key nutrient factors affecting the soil enzyme activities at the study site. The results from this study provided Important scientific insights for improving soil physicochemical properties during the management of the C. oleifera intercropping system and for the development of the C. oleifera industry.

15.
Environ Sci Technol ; 57(36): 13356-13365, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37653579

ABSTRACT

To understand the nanotoxicity effects on plants, it is necessary to systematically study the distribution of NPs in vivo. Herein, elemental and particle-imaging techniques were used to unravel the size effects of ZnO NPs on phytotoxicity. Small-sized ZnO NPs (5, 20, and 50 nm) showed an inhibitory effect on the length and biomass of rice (Oryza sativa L.) used as a model plant. ZnO NP nanotoxicity caused rice root cell membrane damage, increased the malondialdehyde content, and activated antioxidant enzymes. As a control, the same dose of Zn2+ salt did not affect the physiological and biochemical indices of rice, suggesting that the toxicity is caused by the entry of the ZnO NPs and not the dissolved Zn2+. Laser ablation inductively coupled plasma optical emission spectroscopy analysis revealed that ZnO NPs accumulated in the rice root vascular tissues of the rhizodermis and procambium. Furthermore, transmission electron microscopy confirmed that the NPs were internalized to the root tissues. These results suggest that ZnO NPs may exist in the rice root system and that their particle size could be a crucial factor in determining toxicity. This study provides evidence of the size-dependent phytotoxicity of ZnO NPs.


Subject(s)
Oryza , Zinc Oxide , Particle Size , Zinc Oxide/toxicity , Antioxidants , Biomass
16.
Chemosphere ; 340: 139793, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572714

ABSTRACT

Chromium (Cr) is one of the common environmental pollutants, which causes severe health hazards on human health and environmental security. In this study, we characterized two biochars, a raw biochar (RBC) and a Fe-modified biochar (MBC) made from poplar wood chips and determined the effect of the two biochars on remediation of hexavalent chromium (Cr(VI)) in hydroponic system by monitoring Pak choi growth. Results showed the surface area, pore number and pore volume were significantly higher in MBC than in PBC, but the pore size was larger in PBC than in MBC. When compared to the control, low concentrations of Cr(VI) (≤2 mg L-1) promoted the growth and biomass production of Pak choi by 10-78%. In contrast, the high concentrations of Cr(VI) (≥4 mg L-1) showed a significantly reduction of the growth and biomass production of Pak choi by 10-28%. Fe-modified biochar (MBC) had a more significant impact than RBC on the remediation of Cr in the Cr(VI) pollution and improved growth and biomass production of Pak choi to a greater extent. Our study indicated that MBC has a better effect on degrading Cr(VI) pollution. The findings provide scientific basis and reference for the remediation of heavy metals in aquatic ecosystems by using biochar.


Subject(s)
Seedlings , Water Pollutants, Chemical , Humans , Hydroponics , Ecosystem , Charcoal , Chromium , Adsorption
17.
Sci Rep ; 13(1): 12831, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553367

ABSTRACT

As a major source of air pollution, particulate matter (PM) and associated toxic trace elements pose potentially serious threats to human health and environmental safety. As is known that plants can reduce air PM pollution. However, the relationship between PM of different sizes and toxic trace elements in foliar PM is still unclear. This study was performed to explore the association between PM of different sizes (PM2.5, PM10, PM>10) and toxic trace elements (As, Al, Cu, Zn, Cd, Fe, Pb) as well as the correlation among toxic trace elements of six roadside plant species (Cinnamomum camphora, Osmanthus fragrans, Magnolia grandiflora, Podocarpus macrophyllus, Loropetalum chinense var. rubrum and Pittosporum tobira) in Changsha, Hunan Province, China. Results showed that P. macrophyllus had the highest ability to retain PM, and C. camphora excelled in retaining PM2.5. The combination of P. macrophyllus and C. camphora was highly recommended to be planted in the subtropical city to effectively reduce PM. The toxic trace elements accumulated in foliar PM varied with plant species and PM size. Two-way ANOVA showed that most of the toxic trace elements were significantly influenced by plant species, PM size, and their interactions (P < 0.05). Additionally, linear regression and correlation analyses further demonstrated the homology of most toxic trace elements in foliar PM, i.e., confirming plants as predictors of PM sources as well as environmental monitoring. These findings contribute to urban air pollution control and landscape configuration optimization.


Subject(s)
Air Pollutants , Air Pollution , Trace Elements , Humans , Particulate Matter/analysis , Trace Elements/analysis , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Plants
18.
Carbon Balance Manag ; 18(1): 13, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37450075

ABSTRACT

BACKGROUND: Understanding temporal trends and varying responses of water use efficiency (WUE) to environmental changes of diverse ecosystems is key to predicting vegetation growth. WUE dynamics of major ecosystem types (e.g., forest, grassland and cropland) have been studied using various WUE definitions/metrics, but a comparative study on WUE dynamics and their driving forces among different ecosystem types using multiple WUE metrics is lacking. We used eddy covariance measurements for 42 FLUXNET2015 sites (396 site years) from 1997 to 2014, as well as three commonly used WUE metrics (i.e., ecosystem, inherent, and underlying WUE) to investigate the commonalities and differences in WUE trends and driving factors among deciduous broadleaf forests (DBFs), evergreen needleleaf forests (ENFs), grasslands, and croplands. RESULTS: Our results showed that the temporal trends of WUE were not statistically significant at 73.8% of the forest, grassland and cropland sites, and none of the three WUE metrics exhibited better performance than the others in quantifying WUE. Meanwhile, the trends observed for the three WUE metrics were not significantly different among forest, grassland and cropland ecosystems. In addition, WUE was mainly driven by atmospheric carbon dioxide concentration at sites with significant WUE trends, and by vapor pressure deficit (VPD) at sites without significant trends (except cropland). CONCLUSIONS: Our findings revealed the commonalities and differences in the application of three WUE metrics in disparate ecosystems, and further highlighted the important effect of VPD on WUE change.

19.
Plants (Basel) ; 12(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37446972

ABSTRACT

It is well established that forest type can have a profound impact on soil physicochemical properties but the associated changes in soil microbial communities and the mechanisms by which soil quality is improved by various plantations are not fully understood. In this study, soil physicochemical properties and microbial and enzyme activities were investigated in four forest types-Castanopsis hystrix pure forests (CHPF), C. hystrix-Pinus elliottii mixed forests (CHPEF), C. hystrix-Michelia macclurei mixed forests (CHMMF), and C. hystrix-Mytilaria laosensis mixed forests (CHMLF) in the subtropical region of China. The purpose of this study was to assess the effects of afforestation types on characteristics of soil-its physical, chemical, and biological properties. The results showed that the contents of soil total organic carbon (TOC), soil total nitrogen (TN), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) were significantly improved in both CHMMF and CHMLF mixed forest stands when compared to the CHPF pure stand. Soil enzyme activities were enhanced in the mixed forests. In particular, high phosphatase activity was observed in CHMLF stands, leading to the transformation of soil phosphorus to available phosphorus in this forest type. Our study demonstrated that the broad-leaved mixed forests, but not coniferous mixed forests, could significantly improve soil quality in the study region. Our research provides a scientific insight into the promotion of vegetation restoration and plantation forest management in plantation regions of subtropical areas.

20.
Plants (Basel) ; 12(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447011

ABSTRACT

Agroforest systems have been widely recognized as an integrated approach to sustainable land use for addressing the climate change problem because of their greater potential to sequester atmospheric CO2 with multiple economic and ecological benefits. However, the nature and extent of the effects of an age-sequence of agroforestry systems on carbon (C) storage remain largely unknown. To reveal the influence of different aged poplar-crop systems on C stocks, we investigated the variation in biomass and C storage under four aged poplar-crop agroforest systems (3-, 9-, 13-, and 17-year-old) in the Henan province of China. The results showed that stand biomass increased with forest age, ranging from 26.9 to 121.6 t/ha in the corresponding four aged poplar-crop systems. The poplar tree biomass accounted for >80% of the total stand biomass in these poplar-crop agroforestry systems, except in the 3-year-old agroforestry system. The average stand productivity peaked in a 9-year-old poplar-crop system (11.8 t/ha/yr), the next was in 13- and 17-year-old agroforestry systems, and the minimum was found in 3-year-old poplar-crop stands (4.8 t/ha/yr). The total C stocks increased, with aging poplar-crop systems ranging from 99.7 to 189.2 t/ha in the studied agroforestry systems. The proportion of C stocks accounted for about 6, 25, and 69% of the total C stocks in the crop, poplar tree, and soil components in all studied agroforestry ecosystems, respectively. Our results suggested that the poplar-crop system, especially in productive and mature stages, is quite an effective agroforestry model to increase the study site's biomass production and C stocks. This study highlighted the importance of agroforestry systems in C storage. It recommended the poplar-crop agroforest ecosystems as a viable option for sustainable production and C mitigation in the central region of China.

SELECTION OF CITATIONS
SEARCH DETAIL
...