Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 253(Pt 2): 126770, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37683741

ABSTRACT

Translesion synthesis (TLS) is a kind of DNA repair that maintains the stability of the genome and ensures the normal growth of life in cells under emergencies. Y-family DNA polymerases, as a kind of error-prone DNA polymerase, mainly perform TLS. Previous studies have suggested that the occurrence of tumors is associated with the overexpression of human DNA polymerase of the Y family. And the combination of Y-family DNA polymerase inhibitors is promising for cancer therapy. Here we report the functional and structural characterization of a member of the Y-family DNA polymerases, TTEDbh. We determine TTEDbh is an extreme TLS polymerase that can cross oxidative damage sites, and further identify the amino acids and novel structures that are critical for DNA binding, synthesis, fidelity, and oxidative damage bypass. Moreover, previously unnoticed structural elements with important functions have been discovered and analyzed. These studies provide a more experimental basis for further elucidating the molecular mechanisms of DNA polymerase in the Y family. It could also shed light on the design of drugs to target tumors.


Subject(s)
DNA Damage , Neoplasms , Humans , DNA-Directed DNA Polymerase/chemistry , DNA Repair , DNA Replication
2.
Nat Commun ; 14(1): 3702, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349336

ABSTRACT

The Wnt enhanceosome is responsible for transactivation of Wnt-responsive genes and a promising therapeutic target for treatment of numerous cancers with Adenomatous Polyposis Coli (APC) or ß-catenin mutations. How the Wnt enhanceosome is assembled remains poorly understood. Here we show that B-cell lymphoma 9 protein (BCL9), Pygopus (Pygo), LIM domain-binding protein 1 (LDB1) and single-stranded DNA-binding protein (SSBP) form a stable core complex within the Wnt enhanceosome. Their mutual interactions rely on a highly conserved N-terminal asparagine proline phenylalanine (NPF) motif of Pygo, through which the BCL9-Pygo complex binds to the LDB-SSBP core complex. Our crystal structure of a ternary complex comprising the N-terminus of human Pygo2, LDB1 and SSBP2 reveals a single LDB1-SSBP2 complex binding simultaneously to two Pygo2 molecules via their NPF motifs. These interactions critically depend on the NPF motifs which bind to a deep groove formed between LDB1 and SSBP2, potentially constituting a binding site for drugs blocking Wnt/ß-catenin signaling. Analysis of human cell lines lacking LDB or Pygo supports the functional relevance of the Pygo-LDB1-SSBP2 interaction for Wnt/ß-catenin-dependent transcription.


Subject(s)
Intracellular Signaling Peptides and Proteins , beta Catenin , Humans , beta Catenin/metabolism , LIM-Homeodomain Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Wnt Signaling Pathway , Protein Domains , Transcription Factors/genetics
3.
Biomolecules ; 13(4)2023 04 04.
Article in English | MEDLINE | ID: mdl-37189394

ABSTRACT

The scaffolding protein Axin is an important regulator of the Wnt signaling pathway, and its dysfunction is closely related to carcinogenesis. Axin could affect the assembly and dissociation of the ß-catenin destruction complex. It can be regulated by phosphorylation, poly-ADP-ribosylation, and ubiquitination. The E3 ubiquitin ligase SIAH1 participates in the Wnt pathway by targeting various components for degradation. SIAH1 is also implicated in the regulation of Axin2 degradation, but the specific mechanism remains unclear. Here, we verified that the Axin2-GSK3 binding domain (GBD) was sufficient for SIAH1 binding by the GST pull-down assay. Our crystal structure of the Axin2/SIAH1 complex at 2.53 Å resolution reveals that one Axin2 molecule binds to one SIAH1 molecule via its GBD. These interactions critically depend on a highly conserved peptide 361EMTPVEPA368 within the Axin2-GBD, which forms a loop and binds to a deep groove formed by ß1, ß2, and ß3 of SIAH1 by the N-terminal hydrophilic amino acids Arg361 and Thr363 and the C-terminal VxP motif. The novel binding mode indicates a promising drug-binding site for regulating Wnt/ß-catenin signaling.


Subject(s)
Glycogen Synthase Kinase 3 , Wnt Signaling Pathway , Humans , Axin Protein/genetics , Axin Protein/metabolism , Glycogen Synthase Kinase 3/metabolism , beta Catenin/metabolism , Ubiquitination
4.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614183

ABSTRACT

DNA double-strand breaks (DSBs) are the most perilous and harmful type of DNA damage and can cause tumorigenesis or cell death if left repaired with an error or unrepaired. RadD, a member of the SF2 family, is a recently discovered DNA repair protein involved in the repair of DSBs after radiation or chemical damage. However, the function of RadD in DNA repair remains unclear. Here, we determined the crystal structures of RadD/ATPγS and RadD/ATP complexes and revealed the novel mechanism of RadD binding to DNA and ATP hydrolysis with biochemical data. In the RadD catalytic center, the Gly34 and Gly36 on the P-loop are key residues for ATP binding besides the conserved amino acids Lys37 and Arg343 in the SF2 family. If any of them mutate, then RadD loses ATPase activity. Asp117 polarizes the attacking water molecule, which then starts a nucleophilic reaction toward γ-phosphate, forming the transition state. Lys68 acts as a pocket switch to regulate substrate entry and product release. We revealed that the C-terminal peptide of single-stranded DNA-binding protein (SSB) binds the RadD C-terminal domain (CTD) and promotes the RadD ATPase activity. Our mutagenesis studies confirmed that the residues Arg428 on the zinc finger domain (ZFD) and Lys488 on the CTD of RadD are the key sites for binding branched DNA. Using the Coot software combined with molecular docking, we propose a RadD-binding DNA model for the DNA damage repair process.


Subject(s)
Adenosine Triphosphatases , Escherichia coli Proteins , Escherichia coli , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Molecular Docking Simulation , Protein Binding
5.
Opt Express ; 30(10): 17054-17069, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221536

ABSTRACT

Higher-order topological insulator (HOTI) occupies an important position in topological band theory due to its exotic bulk-edge correspondence. Recently, it has been predicted that external magnetic field can induce novel topological phases in 2D HOTIs. However, up to now the theoretical description is still incomplete and the experimental realization is still lacking. Here we proposed a superconducting quantum circuit simulator of 2D Su-Schriffer-Heeger lattice, which is one of the most celebrated HOTI models, and investigate consequently the influence of the continuously varying magnetic field. By using the parametric conversion coupling method, we can establish in principle the time- and site-resolved tunable hopping constants in the proposed architecture, thus providing an ideal platform for investigating the higher-order topological phase transitions induced by continuously varying magnetic field. Our numerical calculation further shows that the higher-order topology of the lattice, which manifests itself through the existence of the zero energy corner modes, exhibit exotic and rich dependence on the imposed magnetic field and the inhomogeneous hopping strength. To probe the proposed magnetic-field-induced topological phase transition, we study the response of the lattice to the corner site pumping in the steady state limit, with results implying that the predicted topological phase boundaries can be unambiguously identified by the measurement of the corner sites and their few neighbors. Requiring only current level of technology, our scheme can be readily tested in experiment and may pave an alternative way towards the future investigation of HOTIs under various mechanisms including magnetic field, disorder, and strong correlation.

7.
Acta Pharmacol Sin ; 43(4): 1001-1012, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34183757

ABSTRACT

Breast cancer is the second leading cause of cancer-related mortality in women, mainly due to metastasis, which is strongly associated with cancer stemness. Our previous studies showed that the eradication of cancer stem-like cells (CSCs) may be related to the activation of dopamine D1 receptor (D1DR). This study aimed to explicitly demonstrate the target-role of D1DR activation in antimetastatic therapy and to investigate the potential efficacy and the underlying D1DR-related mechanisms of QAP14, a new oral compound. 4T1, MDA-MB-231, and D1DR-knockout 4T1 (4T1-D1DR) cells were selected for in vitro study, while 4T1 and 4T1-D1DR cells were further used to establish a mouse allograft model for in vivo study. Our results showed that D1DR is abundantly expressed in both 4T1 and MDA-MB-231 cells and that knocking out D1DR in 4T1 cells accelerated migration and invasion in vitro as well as lung metastasis in vivo. QAP14 inhibited colony formation, cell motility, mammosphere formation and CSC frequency, induced CSC apoptosis and D1DR expression, and increased cAMP/cGMP levels. Additionally, QAP14 showed inhibitory effects on tumor growth and lung metastasis with acceptable safety in vivo. Knocking out D1DR almost completely abolished the efficacy, confirming that QAP14 exhibits its anti-CSC and antimetastatic effects through D1DR activation. The underlying mechanisms involved suppression of the nuclear factor κB (NF-κB)/protein kinase B (Akt) pathway and consequent downregulation of both epithelial-to-mesenchymal transition (EMT) process and cancer stemness. In summary, our findings suggest a potential candidate compound, QAP14, as well as a potential target, D1DR, for metastatic breast cancer therapy.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Female , Humans , Mice , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Neoplastic Stem Cells , Receptors, Dopamine D1/metabolism
8.
MedComm (2020) ; 2(3): 442-452, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34541573

ABSTRACT

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants has posed a serious global public health emergency. Therapeutic interventions or vaccines are urgently needed to treat and prevent the further dissemination of this contagious virus. This study described the identification of neutralizing receptor-binding domain (RBD)-specific antibodies from mice through vaccination with a recombinant SARS-CoV-2 RBD. RBD-targeted monoclonal antibodies (mAbs) with distinct function and epitope recognition were selected to understand SARS-CoV-2 neutralization. High-affinity RBD-specific antibodies exhibited high potency in neutralizing both live and pseudotype SARS-CoV-2 viruses and the SARS-CoV-2 pseudovirus particle containing the spike protein S-RBDV367F mutant (SARS-CoV-2(V367F)). These results demonstrated that these antibodies recognize four distinct groups (I-IV) of epitopes on the RBD and that mAbs targeting group I epitope can be used in combination with mAbs recognizing groups II and/or IV epitope to make mAb cocktails against SARS-CoV-2 and its mutants. Moreover, structural characterization reveals that groups I, III, and IV epitopes are closely located to an RBD hotspot. The identification of RBD-specific antibodies and cocktails may provide an effective therapeutic and prophylactic intervention against SARS-CoV-2 and its isolates.

9.
Nat Microbiol ; 5(9): 1107-1118, 2020 09.
Article in English | MEDLINE | ID: mdl-32483229

ABSTRACT

Type I restriction-modification (R-M) systems are widespread in prokaryotic genomes and provide robust protection against foreign DNA. They are multisubunit enzymes with methyltransferase, endonuclease and translocase activities. Despite extensive studies over the past five decades, little is known about the molecular mechanisms of these sophisticated machines. Here, we report the cryo-electron microscopy structures of the representative EcoR124I R-M system in different assemblies (R2M2S1, R1M2S1 and M2S1) bound to target DNA and the phage and mobile genetic element-encoded anti-restriction proteins Ocr and ArdA. EcoR124I can precisely regulate different enzymatic activities by adopting distinct conformations. The marked conformational transitions of EcoR124I are dependent on the intrinsic flexibility at both the individual-subunit and assembled-complex levels. Moreover, Ocr and ArdA use a DNA-mimicry strategy to inhibit multiple activities, but do not block the conformational transitions of the complexes. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into assembly, operation and inhibition mechanisms of type I R-M systems.


Subject(s)
DNA Restriction-Modification Enzymes/chemistry , DNA Restriction-Modification Enzymes/metabolism , Deoxyribonucleases, Type I Site-Specific/chemistry , Deoxyribonucleases, Type I Site-Specific/metabolism , Bacterial Proteins , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , DNA Restriction-Modification Enzymes/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Deoxyribonucleases, Type I Site-Specific/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Models, Molecular , Mutation , Protein Conformation , Repressor Proteins , Viral Proteins
10.
J Org Chem ; 85(10): 6252-6260, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32298579

ABSTRACT

A one-pot synthesis of 1,3-diyne-tethered trifluoromethylcyclopropanes starting from 2-CF3-3,5-diyne-1-enes and sulfur ylides via a sulfur ylide mediated cyclopropanation and a DBU-mediated epimerization sequence is described in this work. This process is highly diastereoselective with broad substrate scope. Moreover, a series of synthetic transformations based on the diyne moieties were conducted smoothly, affording cyclopropanes featuring trifluoromethyl-substituted all-carbon quaternary centers.

12.
Proc Natl Acad Sci U S A ; 117(2): 1042-1048, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31892537

ABSTRACT

The Lim domain binding proteins (LDB1 and LDB2 in human and Chip in Drosophila) play critical roles in cell fate decisions through partnership with multiple Lim-homeobox and Lim-only proteins in diverse developmental systems including cardiogenesis, neurogenesis, and hematopoiesis. In mammalian erythroid cells, LDB1 dimerization supports long-range connections between enhancers and genes involved in erythropoiesis, including the ß-globin genes. Single-stranded DNA binding proteins (SSBPs) interact specifically with the LDB/Chip conserved domain (LCCD) of LDB proteins and stabilize LDBs by preventing their proteasomal degradation, thus promoting their functions in gene regulation. The structural basis for LDB1 self-interaction and interface with SSBPs is unclear. Here we report a crystal structure of the human LDB1/SSBP2 complex at 2.8-Å resolution. The LDB1 dimerization domain (DD) contains an N-terminal nuclear transport factor 2 (NTF2)-like subdomain and a small helix 4-helix 5 subdomain, which together form the LDB1 dimerization interface. The 2 LCCDs in the symmetric LDB1 dimer flank the core DDs, with each LCCD forming extensive interactions with an SSBP2 dimer. The conserved linker between LDB1 DD and LCCD covers a potential ligand-binding pocket of the LDB1 NTF2-like subdomain and may serve as a regulatory site for LDB1 structure and function. Our structural and biochemical data provide a much-anticipated structural basis for understanding how LDB1 and the LDB1/SSBP interactions form the structural core of diverse complexes mediating cell choice decisions and long-range enhancer-promoter interactions.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , LIM Domain Proteins/chemistry , LIM Domain Proteins/metabolism , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Dimerization , Gene Expression Regulation , Humans , LIM Domain Proteins/genetics , Models, Molecular , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Protein Domains , Transcription Factors/genetics
13.
Rev Sci Instrum ; 90(6): 065105, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31254998

ABSTRACT

The steam generator (SG) is a heat exchange device between a sodium coolant and water in sodium-cooled fast reactors. Its transfer tubes are prone to leakage to result in sodium-water reaction, which will affect the operational safety of the entire nuclear reactor. To this end, a signal processing method is studied to detect the SG leakage using an electromagnetic vortex flowmeter (EVFM). Water flow is firstly used to replace liquid sodium for conducting the hydraulic experiments, and the output signal of the sensor of the EVFM (abbreviated as EVFM sensor output signal) is collected under different gas injection volumes. The characteristics of the signal are analyzed in the time domain, and the collected signals are modeled. A signal processing method of bubble detection in liquid sodium is proposed based on the peak-to-peak standard deviation, which is realized in real time on the hardware system based on a digital signal processor. The gas injection experiments in liquid sodium are conducted to verify the effectiveness of the signal processing method and system developed in this paper. The minimum amount leakage of water can be detected as 0.1 g/s.

14.
Proteins ; 87(9): 791-795, 2019 09.
Article in English | MEDLINE | ID: mdl-31035307

ABSTRACT

The helicase superfamily 2 (SF2) proteins are involved in essentially every step in DNA and RNA metabolism. The radD (yejH) gene, which belongs to SF2, plays an important role in DNA repair. The RadD protein includes all seven conserved SF2 motifs and has shown ATPase activity. Here, we first reported the structure of RadD from Escherichia coli containing two RecA-like domains, a zinc finger motif, and a C-terminal domain. Based on the structure of RadD and other SF2 proteins, we then built a model of the RedD-ATP complex.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Chromatography, Gel , Escherichia coli Proteins/genetics , Protein Binding , Protein Structure, Secondary
15.
Protein Sci ; 28(4): 788-793, 2019 04.
Article in English | MEDLINE | ID: mdl-30676665

ABSTRACT

The human single-stranded DNA binding Protein 2 (SSBP2) is a tumor suppressor implicated in multiple cancer forms. The SSBP2 and related SSBP3/SSBP4 proteins are predicted to be intrinsically disordered excepted for their highly conserved N-terminal LUFS (LUG/LUH, Flo8, and SSBP/SSDP) domain. LUFS domains are found in a number of proteins including some transcriptional co-repressors. Although LUFS domains contain an N-terminal Lis homology (LisH) motif that typically forms a stable dimer, no 3D structure of any LUFS domain is available. Here, we report a crystal structure of the LUFS domain of human SSBP2 at 1.52 Å resolution. We show that the SSBP2 LUFS domain forms a homo-tetramer and reveal how an alpha-helix C-terminal to the LisH motif mediates SSBP2 tetramerization (dimerization of dimers). Conservation of the tetramerization interface among LUFS domains suggests that other LUFS domains may also form tetramers in similar manners.


Subject(s)
DNA-Binding Proteins/chemistry , Amino Acid Sequence , Conserved Sequence , Crystallography, X-Ray , Humans , Models, Molecular , Protein Domains , Protein Multimerization
16.
Sci Rep ; 8(1): 2127, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391496

ABSTRACT

RecF is a principal member of the RecF pathway. It interacts with RecO and RecR to initiate homologous recombination by loading RecA recombinases on single-stranded DNA and displacing single-stranded DNA-binding proteins. As an ATP-binding cassette ATPase, RecF exhibits ATP-dependent dimerization and structural homology with Rad50 and SMC proteins. However, the mechanism and action pattern of RecF ATP-dependent dimerization remains unclear. Here, We determined three crystal structures of TTERecF, TTERecF-ATP and TTERecF-ATPɤS from Thermoanaerobacter tengcongensis that reveal a novel ATP-driven RecF dimerization. RecF contains a positively charged tunnel on its dimer interface that is essential to ATP binding. Our structural and biochemical data indicate that the Walker A motif serves as a switch and plays a key role in ATP binding and RecF dimerization. Furthermore, Biolayer interferometry assay results showed that the TTERecF interacted with ATP and formed a dimer, displaying a higher affinity for DNA than that of the TTERecF monomer. Overall, our results provide a solid structural basis for understanding the process of RecF binding with ATP and the functional mechanism of ATP-dependent RecF dimerization.


Subject(s)
Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA Repair , DNA Replication , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Protein Conformation , Thermoanaerobacter/enzymology , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Dimerization
17.
Sci Rep ; 7(1): 15638, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29142233

ABSTRACT

CDC73/Parafibromin is a critical component of the Paf1 complex (PAF1C), which is involved in transcriptional elongation and histone modifications. Mutations of the human CDC73/HRPT2 gene are associated with hyperparathyroidism-jaw tumor (HPT-JT) syndrome, an autosomal dominant disorder. CDC73/parafibromin was initially recognized as a tumor suppressor by inhibiting cell proliferation via repression of cyclin D1 and c-myc genes. In recent years, it has also shown oncogenic features by activating the canonical Wnt/ß-catenin signal pathway. Here, through limited proteolysis analysis, we demonstrate that the evolutionarily conserved human CDC73 N-terminal 111 residues form a globularly folded domain (hCDC73-NTD). We have determined a crystal structure of hCDC73-NTD at 1.02 Å resolution, which reveals a novel protein fold. CDC73-NTD contains an extended hydrophobic groove on its surface that may be important for its function. Most pathogenic CDC73 missense mutations associated with the HPT-JT syndrome are located in the region encoding CDC73-NTD. Our crystal and biochemical data indicate that most CDC73 missense mutations disrupt the folding of the hydrophobic core of hCDC73-NTD, while others such as the K34Q mutant reduce its thermostability. Overall, our results provide a solid structural basis for understanding the structure and function of CDC73 and its association with the HPT-JT syndrome and other diseases.


Subject(s)
Adenoma/genetics , Fibroma/genetics , Hyperparathyroidism/genetics , Jaw Neoplasms/genetics , Protein Conformation , Tumor Suppressor Proteins/chemistry , Adenoma/pathology , Cell Proliferation/genetics , Crystallography, X-Ray , Cyclin D1/genetics , Fibroma/pathology , Humans , Hydrophobic and Hydrophilic Interactions , Hyperparathyroidism/pathology , Jaw Neoplasms/pathology , Mutation, Missense/genetics , Protein Domains/genetics , Protein Folding , Proto-Oncogene Proteins c-myc/genetics , Surface Properties , Tumor Suppressor Proteins/genetics
18.
Proc Natl Acad Sci U S A ; 114(42): 11151-11156, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28973912

ABSTRACT

Type I restriction-modification (R-M) systems are multisubunit enzymes with separate DNA-recognition (S), methylation (M), and restriction (R) subunits. Despite extensive studies spanning five decades, the detailed molecular mechanisms underlying subunit assembly and conformational transition are still unclear due to the lack of high-resolution structural information. Here, we report the atomic structure of a type I MTase complex (2M+1S) bound to DNA and cofactor S-adenosyl methionine in the "open" form. The intermolecular interactions between M and S subunits are mediated by a four-helix bundle motif, which also determines the specificity of the interaction. Structural comparison between open and previously reported low-resolution "closed" structures identifies the huge conformational changes within the MTase complex. Furthermore, biochemical results show that R subunits prefer to load onto the closed form MTase. Based on our results, we proposed an updated model for the complex assembly. The work reported here provides guidelines for future applications in molecular biology.


Subject(s)
DNA Restriction-Modification Enzymes/metabolism , Thermoanaerobacter/enzymology , DNA Restriction-Modification Enzymes/chemistry , Protein Conformation
20.
PLoS One ; 12(2): e0172460, 2017.
Article in English | MEDLINE | ID: mdl-28234941

ABSTRACT

Physic nut (Jatropha curcas L) seed oil is a natural resource for the alternative production of fossil fuel. Seed oil production is mainly depended on seed yield, which was restricted by the low ratio of staminate flowers to pistillate flowers. Further, the mechanism of physic nut flower sex differentiation has not been fully understood yet. Quantitative Real Time-Polymerase Chain Reaction is a reliable and widely used technique to quantify the gene expression pattern in biological samples. However, for accuracy of qRT-PCR, appropriate reference gene is highly desirable to quantify the target gene level. Hence, the present study was aimed to identify the stable reference genes in staminate and pistillate flowers of J. curcas. In this study, 10 candidate reference genes were selected and evaluated for their expression stability in staminate and pistillate flowers, and their stability was validated by five different algorithms (ΔCt, BestKeeper, NormFinder, GeNorm and RefFinder). Resulting, TUB and EF found to be the two most stably expressed reference for staminate flower; while GAPDH1 and EF found to be the most stably expressed reference gene for pistillate flowers. Finally, RT-qPCR assays of target gene AGAMOUS using the identified most stable reference genes confirmed the reliability of selected reference genes in different stages of flower development. AGAMOUS gene expression levels at different stages were further proved by gene copy number analysis. Therefore, the present study provides guidance for selecting appropriate reference genes for analyzing the expression pattern of floral developmental genes in staminate and pistillate flowers of J. curcas.


Subject(s)
Flowers/genetics , Genes, Essential , Genes, Plant , Jatropha/genetics , Algorithms , Biofuels , Flowers/growth & development , Gene Expression Regulation, Plant , Genomic Instability , Jatropha/growth & development , MADS Domain Proteins/genetics , Plant Oils/isolation & purification , Real-Time Polymerase Chain Reaction/standards , Seeds/chemistry , Seeds/genetics , Seeds/growth & development , Sex Differentiation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...