Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119568, 2023 12.
Article in English | MEDLINE | ID: mdl-37597773

ABSTRACT

Hydrogen sulfide (H2S) is the third gas signaling molecule that has been shown to be involved in the regulating vital activities in the body, including inhibition of aging. However, it is unknown whether H2S alleviates aging in the kidney and glomerular mesangial cells (GMCs) by modulating their mitophagy. Here, results of experiments in vivo and in vitro showed that compared with control group, the renal function of mice and GMCs viability were decreased in D-gal (D-galactose) group, while the activity of SA-ß-gal and p21 expression were increased, Cyclin D1 and Klotho expressions were decreased; H2S content and CSE expression were lower; ROS and MDA contents and mitochondrial permeability transition pore (mPTP) opening were risedose; ATP production and mitochondrial membrane potential (Δψm) were reduced; Apoptotic rate, the expression of Cleaved caspase-9 and -3, Cyt c, p62 and Drp1 were enhanced and the expression of Bcl-2, Mfn2, Beclin-1, LC3 II/I, PINK1 and parkin were decreased. In addition, phospho-AMPK/AMPK and phospho-ULK1/ULK1 were also decreased significantly. Compared with the D-gal group, the changes of above indexes were reversed in the D-gal + NaHS (Sodium hydrosulfide, an exogenous H2S donor) group. The reverse effects of NaHS were similar to that of AICAR (an AMPK agonist) and kinetin (a PINK1 agonist), respectively. Taken together, these results suggest that exogenous H2S increases mitophagy and inhibits apoptosis as well as oxidative stress through up-regulation of AMPK-ULK1-PINK1-parkin pathway, which delays kidney senescence in mice.


Subject(s)
Mesangial Cells , Mitophagy , AMP-Activated Protein Kinases , Kidney , Oxidative Stress
2.
Front Chem ; 9: 651281, 2021.
Article in English | MEDLINE | ID: mdl-33968901

ABSTRACT

The performance of spray-coated polymer solar cells could be largely improved via morphologies and phase optimization by solvent engineering. However, there is still a lack of fundamental knowledge and know-how in controlling blend morphology by using various solvents. Here, the effect of adding low polar benzene and non-halogen benzene derivatives with triple symmetric molecular has been systematically investigated and discussed. It is found that the triple symmetric non-halogen benzene could promote the formation of preferential face-on molecule orientation for PBDB-T-2Cl:IT4F films by grazing incidence wide-angle X-ray scattering. The X-ray photoelectron spectroscopy shows that PBDB-T-2Cl could be transported to the surface of the blend film during drying process. A 3D opt-digital microscope shows that triple symmetric non-halogen benzene could also improve the morphologies of active layers by reducing the coffee ring or other micro-defects. Due to the appropriate vapor pressures, devices with mixing 20% benzene or the triple symmetric non-halogen in spray solution could significantly improve the device performance. Device prepared using 20% 1,3,5-trimethylbenzene (TMB) and 80% chlorobenzene (CB) mixture solvent has the best morphology and phase structure, and the power conversion efficiency (PCE) of the device was increased nearly 60 to 10.21% compared with the device using CB as the only solvent.

3.
Res Microbiol ; 166(8): 633-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26254772

ABSTRACT

The treatment, in farmed mink, of hemorrhagic pneumonia caused by multidrug-resistant Pseudomonas aeruginosa strains has become increasingly difficult. This study investigated the potential use of phages as a therapy against hemorrhagic pneumonia caused by P. aeruginosa in a murine hemorrhagic pneumonia model. An N4-like phage designated YH6 was isolated using P. aeruginosa strain D9. YH6 is a virulent phage with efficient and broad host lytic activity against P. aeruginosa. No bacterial virulence- or lysogenesis-related ORF is present in the YH6 genome, making it eligible for use in phage therapy. In our murine experiments, a single intranasal administration of YH6 (2 × 10(7) PFU) 2 h after D9 intranasal injections at double minimum lethal dose was sufficient to protect mice against hemorrhagic pneumonia. The bacterial load in the lungs of YH6-protected mice was less than 10(3) CFU/g within 24 h after challenge and ultimately became undetectable, whereas the amount of bacteria in the lung tissue derived from unprotected mice was more than 10(8) CFU/g within 24 h after challenge. In view of its protective efficacy in this murine hemorrhagic pneumonia model, YH6 may serve as an alternative treatment strategy for infections caused by multidrug-resistant P. aeruginosa.


Subject(s)
Pneumonia, Bacterial/therapy , Pseudomonas Infections/therapy , Pseudomonas Phages , Pseudomonas aeruginosa/pathogenicity , Administration, Intranasal , Animals , Bacterial Load , Biological Therapy , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Female , Lung/microbiology , Lung/pathology , Mice , Pneumonia, Bacterial/microbiology , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas Phages/isolation & purification , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/virology
4.
Microbiol Immunol ; 59(9): 533-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26249788

ABSTRACT

Pseudomonas aeruginosa poses a major threat to human health and to the mink industry. Thus, development of vaccines that elicit robust humoral and cellular immunity against P. aeruginosa is greatly needed. In this study, a recombinant attenuated Salmonella vaccine (RASV) that expresses the outer membrane proteins fusion OprF190-342 -OprI21-83 (F1I2) from P. aeruginosa was constructed and the potency of this vaccine candidate assessed by measuring F1I2-specific humoral immune responses upon vaccination through s.c. or oral routes. S.C. administration achieved higher serum IgG titers and IgA titers in the intestine and induced stronger F1I2-specific IgG and IgA titers in lung homogenate than did oral administration, which resulted in low IgG titers and no local IgA production. High titers of IFN-γ, IL-4, and T-lymphocyte subsets induced a mixed Th1/Th2 response in mice immunized s.c., indicating elicitation of cellular immunity. Importantly, when immunized mice were challenged with P. aeruginosa by the intranasal route 30 days after the initial immunization, s.c. vaccination achieved 77.78% protection, in contrast to 41.18% via oral administration and 66.67% via Escherichia coli-expressed F1I2 (His-F1I2) vaccination. These results indicate that s.c. vaccination provides a better protective response against P. aeruginosa infection than do oral administration and the His-F1I2 vaccine.


Subject(s)
Bacterial Proteins/immunology , Drug Carriers , Lipoproteins/immunology , Pseudomonas Infections/prevention & control , Pseudomonas Vaccines/immunology , Pseudomonas aeruginosa/immunology , Salmonella typhimurium/genetics , Administration, Oral , Animals , Antibodies, Bacterial/analysis , Antibodies, Bacterial/blood , Bacterial Proteins/genetics , Disease Models, Animal , Escherichia coli , Female , Immunoglobulin A/analysis , Immunoglobulin G/blood , Injections, Subcutaneous , Interferon-gamma/metabolism , Interleukin-4/metabolism , Intestinal Mucosa/immunology , Lipoproteins/genetics , Lung/immunology , Mice, Inbred BALB C , Mink , Pseudomonas Vaccines/administration & dosage , Pseudomonas Vaccines/genetics , Pseudomonas aeruginosa/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Salmonella Vaccines/administration & dosage , Salmonella Vaccines/genetics , Salmonella typhimurium/growth & development , Serum/immunology , Survival Analysis , T-Lymphocyte Subsets/immunology , Treatment Outcome , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...