Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Transl Psychiatry ; 13(1): 383, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071192

ABSTRACT

Schizophrenia (SZ) is a complex psychiatric neurodevelopmental disorder with uncertain etiology and pathogenesis. Increasing evidence has recognized the key role of the gut microbiota in SZ. However, few studies have investigated the potential link between oral microbiota and SZ. We studied the tongue coating microbiota and inflammatory profiles of 118 elderly SZ patients and 97 age-matched healthy controls using Illumina MiSeq sequencing and multiplex immunoassays, respectively. Reduced α-diversity, along with a significant difference in ß-diversity, were observed in patients with SZ. We have identified SZ-associated oral dysbiosis, characterized by increased Streptococcus and Fusobacterium, as well as decreased Prevotella and Veillonella. These differential genera could potentially serve as biomarkers for SZ, either alone or in combination. Additionally, an elevated Streptococcus/Prevotella ratio could indicate oral dysbiosis. These differential genera formed two distinct clusters: Streptococcus-dominated and Prevotella-dominated, which exhibited different correlations with the altered immunological profiles. Furthermore, we also observed disruptions in the inferred microbiota functions in SZ-associated microbiota, particularly in lipid and amino acid metabolism. Our study provides novel insights into the characteristics of tongue coating microbiota and its associations with immunological disturbances in elderly SZ patients, which offer new targets for the diagnosis and treatment of SZ in the elderly.


Subject(s)
Microbiota , Schizophrenia , Humans , Aged , Cross-Sectional Studies , Dysbiosis , China
2.
Ital J Pediatr ; 49(1): 148, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946309

ABSTRACT

BACKGROUND: The prevalence of food allergies (FA) has been steadily increasing over 2 to 3 decades, showing diverse symptoms and rising severity. These long-term outcomes affect children's growth and development, possibly linking to inflammatory bowel disease. However, the cause remains unclear. Previous studies reveal that early infancy significantly impacts FA development through gut microbiota. Yet, a consistent view on dysbiosis characteristics and its connection to future allergies is lacking. We explored how early-life gut microbiota composition relates to long-term clinical signs in children with FA through longitudinal research. METHODS: We employed high-throughput 16S rDNA gene sequencing to assess gut microbiota composition in early-life FA children in southern Zhejiang. Follow-up of clinical manifestations over 2 years allowed us to analyze the impact of early-life gut microbiota dysbiosis on later outcomes. RESULTS: While the diversity of gut microbiota in FA children remained stable, there were shifts in microbiota abundance. Abundant Akkermansia, Parabacteroides, Blautia, and Escherichia-Shigella increased, while Bifidobacterium and Clostridium decreased. After 2 years, two of ten FA children still showed symptoms. These two cases exhibited increased Escherichia-Shigella and reduced Bifidobacterium during early childhood. The other eight cases experienced symptom remission. CONCLUSIONS: Our study suggests that FA and its prognosis might not correlate with early-life gut microbiota diversity. Further experiments are needed due to the small sample size, to confirm these findings.


Subject(s)
Food Hypersensitivity , Gastrointestinal Microbiome , Microbiota , Humans , Child , Child, Preschool , Dysbiosis/microbiology , Food Hypersensitivity/diagnosis , Prognosis , Bifidobacterium
3.
Can J Infect Dis Med Microbiol ; 2023: 5602401, 2023.
Article in English | MEDLINE | ID: mdl-37680457

ABSTRACT

Both schizophrenia (SZ) and multiple sclerosis (MS) affect millions of people worldwide and impose a great burden on society. Recent studies indicated that MS elevated the risk of SZ and vice versa, whereas the underlying pathological mechanisms are still obscure. Considering that fecal microbiota played a vital role in regulating brain functions, the fecal microbiota and serum cytokines from 90 SZ patients and 71 age-, gender-, and BMI-matched cognitively normal subjects (referred as SZC), 22 MS patients and 33 age-, gender-, and BMI-matched healthy subjects (referred as MSC) were analyzed. We found that both diseases demonstrated similar microbial diversity and shared three differential genera, including the down-regulated Faecalibacterium, Roseburia, and the up-regulated Streptococcus. Functional analysis indicated that the three genera were involved in pathways such as "carbohydrate metabolism" and "amino acid metabolism." Moreover, the variation patterns of serum cytokines associated with MS and SZ patients were a bit different. Among the six cytokines perturbed in both diseases, TNF-α increased, while IL-8 and MIP-1α decreased in both diseases. IL-1ra, PDGF-bb, and RANTES were downregulated in MS patients but upregulated in SZ patients. Association analyses showed that Faecalibacterium demonstrated extensive correlations with cytokines in both diseases. Most notably, Faecalibacterium correlated negatively with TNF-α. In other words, fecal microbiota such as Faecalibacterium may contribute to the coexistence of MS and SZ by regulating serum cytokines. Our study revealed the potential roles of fecal microbiota in linking MS and SZ, which paves the way for developing gut microbiota-targeted therapies that can manage two diseases with a single treat.

4.
BMC Pediatr ; 23(1): 408, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37598160

ABSTRACT

BACKGROUND: Scarce evidence exists on pediatric colorectal polyp risk factors. This study explored the clinical manifestations, morphological and pathological characteristics of, and risk factors for pediatric colorectal polyps. METHODS: This retrospective case-control study included children who received colonoscopy, divided into a colorectal polyp group and a normal control group based on colonoscopy results. The risk factors for colorectal polyps in children were analyzed through logistic regression analysis. RESULTS: The mean age of children with polyps was 6.77 ± 3.44 years. Polyps were detected predominantly in males (72.9%); hematochezia was the primary clinical manifestation (80.25%). Most polyps were juvenile (88.9%) and solitary (87.7%); 50.6% were located in the rectosigmoid area. Univariate analysis showed that gender (P = 0.037), age (P < 0.001), family aggregation (P < 0.001), specific immunoglobulin E (sIgE) (P < 0.001), platelet count (P = 0.001), aspartate aminotransferase (AST) (P = 0.016), meat intake (P = 0.010), and vegetable intake (P < 0.001) were significantly associated with colorectal polyps. Age ≤ 6 years (3-6 years: OR: 26.601, 95% CI: 3.761-160.910; < 3 years: OR: 22.678, 95% CI: 1.873-274.535), positive family aggregation (OR: 3.540, 95% CI: 1.177-10.643), positive sIgE (OR:2.263, 95% CI: 1.076-4.761), and higher meat intake (OR:1.046, 95% CI: 1.029-1.063) were risk factors for pediatric colorectal polyps in logistic regression analysis. Higher vegetable intake (OR: 0.993, 95% CI: 0.986-1.000) was a protective factor against pediatric colorectal polyps. The area under the curve (AUC) of meat intake in the receiver operating characteristic (ROC) curve analysis for predicting colorectal polyps was 0.607; the best cut-off value was 92.14 g/d (P = 0.010, 95% CI: 0.527-0.687). The meat and vegetable intake combination AUC in predicting pediatric colorectal polyps was 0.781 (P < 0.001, 95% CI: 0.718-0.845). CONCLUSIONS: Juvenile, solitary, and located in the rectosigmoid region polyps are most common in children. Hematochezia is the main clinical manifestation. Most polyps were, but multiple and proximally located polyps were also detected. Age ≤ 6 years, especially 3-6 years, positive family aggregation, positive sIgE, and higher meat intake are risk factors for pediatric colorectal polyps. A higher vegetable intake is a protective factor.


Subject(s)
Colonic Polyps , Male , Child , Humans , Child, Preschool , Case-Control Studies , Retrospective Studies , Colonic Polyps/diagnosis , Colonic Polyps/epidemiology , Colonic Polyps/etiology , China/epidemiology , Immunoglobulin E , Risk Factors
5.
J Asthma Allergy ; 16: 355-364, 2023.
Article in English | MEDLINE | ID: mdl-37041761

ABSTRACT

Asthma is a common chronic inflammatory disease of the airway. Intestinal flora, a significant risk factor for asthma, has become a widespread concern in the pathogenesis of asthma. To review the literature related to intestinal flora in asthma, summarize research direction, and report trends, this study used CiteSpace to perform bibliometric statistics and analysis on the research papers of intestinal flora and asthma collected in the Web of science core collection from 2001 to 2021. Eventually, a total of 613 articles were included. The results demonstrated that research on gut flora and asthma continued to heat up, with article numbers increasing, especially in the last decade. Moreover, analysis of the keywords showed that the research topics of intestinal flora and asthma range from confirming the link between intestinal flora and asthma to investigating mechanisms and then to asthma treatment. According to the summary of research hotspots, we expand on three emerging issues that require attention in the intestinal flora and asthma research, including (regulatory T)Treg cells, probiotics, and chain fatty acid. Evidence illustrated that Treg cells play a crucial role in the pathogenesis of asthma caused by dysbiosis of the gut flora. Furthermore, in contrast to probiotic supplements, which do not reduce the risk of developing asthma, short-chain fatty acids supplements do. Overall, the research direction in the field of intestinal flora and asthma has recently evolved from macro to micro with depth broadened. As a robust scientific evaluation, our study provided a comprehensive overview of the area, particularly for research focus, which could more precisely direct scholars on future research and clinical diagnosis, therapy, and individualized prevention.

6.
Front Immunol ; 14: 1135861, 2023.
Article in English | MEDLINE | ID: mdl-36969178

ABSTRACT

Background: Exploring the human microbiome in multiple body niches is beneficial for clinicians to determine which microbial dysbiosis should be targeted first. We aimed to study whether both the fecal and vaginal microbiomes are disrupted in SLE patients and whether they are correlated, as well as their associations with immunological features. Methods: A group of 30 SLE patients and 30 BMI-age-matched healthy controls were recruited. Fecal and vaginal samples were collected, the 16S rRNA gene was sequenced to profile microbiomes, and immunological features were examined. Results: Distinct fecal and vaginal bacterial communities and decreased microbial diversity in feces compared with the vagina were found in SLE patients and controls. Altered bacterial communities were found in the feces and vaginas of patients. Compared with the controls, the SLE group had slightly lower gut bacterial diversity, which was accompanied by significantly higher bacterial diversity in their vaginas. The most predominant bacteria differed between feces and the vagina in all groups. Eleven genera differed in patients' feces; for example, Gardnerella and Lactobacillus increased, whereas Faecalibacterium decreased. Almost all the 13 genera differed in SLE patients' vaginas, showing higher abundances except for Lactobacillus. Three genera in feces and 11 genera in the vagina were biomarkers for SLE patients. The distinct immunological features were only associated with patients' vaginal microbiomes; for example, Escherichia-Shigella was negatively associated with serum C4. Conclusions: Although SLE patients had fecal and vaginal dysbiosis, dysbiosis in the vagina was more obvious than that in feces. Additionally, only the vaginal microbiome interacted with patients' immunological features.


Subject(s)
Gastrointestinal Microbiome , Lupus Erythematosus, Systemic , Microbiota , Female , Humans , Gastrointestinal Microbiome/genetics , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Feces/microbiology , Lupus Erythematosus, Systemic/microbiology , Vagina/microbiology
7.
Environ Toxicol ; 38(4): 770-782, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36602409

ABSTRACT

Environmental pollutants are recognized as one of the major concerns for public health. The free-living nematode Caenorhabditis elegans are widely used to evaluate the toxicity of environmental contaminants in biomonitoring researches. In the present study, a new transgenic strain, rps-30-/- ;RFP-RPS-30UbL was generated, with constitutively active rps-30 promoter used to control the expression of RFP-RPS-30UbL fusion protein. We found RFP-RPS-30UbL would accumulate to form 'rod-like' structures, when worms were exposed to environmental contaminants, including Cd, Hg, Pb, As, Paraquat and Dichlorvos. The number of the 'rod-like' structures was induced by environmental contaminants in a concentration- and time-dependent manner. The 'rod-like' structure formation could be detectable in response to the concentration of each contaminant as low as 24-h LC50 × 10-7 , and the detectable time could be within 2 h. Detecting the transcription and expression levels of RFP-RPS-30UbL in worms exposed to different kinds of environmental contaminants showed that the expression level of RFP-RPS-30UbL was not regulated by environmental contaminants, and the number differences of 'rod-like' structures were just due to the morphological change of RFP-RPS-30UbL from dispersion to accumulation induced by environmental contaminants. In addition, this transgenic strain was developed in rps-30-/- homozygous worm, which was a longevity strain. Detection of lifespan and brood size showed that rps-30-/- ;RFP-RPS-30UbL transgenic worm was more suitable to be cultured and used further than N2;GFP-RPS-30UbL , for expressing RPS-30UbL in wild type N2 worms shortened the lifespan and deceased the brood size. Therefore, rps-30-/- ;RFP-RPS-30UbL transgenic worm might play a potential role in versatile environmental biomonitoring, with the advantage of not only the convenient and quick fluorescence-based reporter assay, but also the quantificational evaluation of the toxicities of environmental contaminants using 'rod-like' structures with high sensitivity, off-limited the expression level of the reporter protein.


Subject(s)
Caenorhabditis elegans Proteins , Environmental Pollutants , Nematoda , Animals , Caenorhabditis elegans/genetics , Environmental Pollutants/toxicity , Nematoda/metabolism , Promoter Regions, Genetic , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
8.
Inflammation ; 46(2): 509-521, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36526899

ABSTRACT

Allergic asthma is a chronic inflammatory disease primarily mediated by Th2 immune mechanisms. Exposure to antibiotics during early life is associated with an increased risk of allergic asthma, although the exact mechanism is not fully understood. In this study, mice were randomly divided into a normal saline control group (NS group), an OVA-induced asthma group (OVA group), a vancomycin treatment control group (VAN.NS group), and a vancomycin treatment the OVA-induced asthma group (VAN.OVA group). The results showed that vancomycin altered dominant species in experimental mice. The phylum level histogram showed that Bacteroides abundance was increased, and Firmicutes abundance was decreased in the OVA group. Airway inflammation and airway hyperresponsiveness (AHR) were aggravated in the vancomycin-exposed group. Enzyme-linked immunosorbent assay (ELISA) showed that the serum levels of IL-5, IL-13, and IL-33 in the OVA group were higher than those in the NS group, especially in the VAN.OVA group. The expression of GATA binding protein-3(GATA3) and retinoid acid receptor-related orphan receptor alpha (RORa) increased in the OVA group, even more so in the VAN.OVA group. Group 2 innate lymphoid cells (ILC2s) in the lung detected by flow cytometry was increased in OVA mice more than those in control mice, with a more remarkable increase in the VAN.OVA. Our results demonstrated that vancomycin used in early life could alter the intestinal microecology of mice, which, in turn, aggravates airway inflammation and upregulate type 2 innate lymphocytes.


Subject(s)
Asthma , Gastrointestinal Microbiome , Mice , Animals , Vancomycin/pharmacology , Immunity, Innate , Ovalbumin , Lymphocytes/metabolism , Asthma/chemically induced , Asthma/drug therapy , Lung/metabolism , Inflammation/chemically induced , Mice, Inbred BALB C , Disease Models, Animal , Bronchoalveolar Lavage Fluid
9.
Front Pediatr ; 10: 1018549, 2022.
Article in English | MEDLINE | ID: mdl-36389357

ABSTRACT

Introduction: Allergen immunotherapy (AIT) is considered to be the only treatment that may change the natural process of allergic diseases. Subcutaneous immunotherapy (SCIT) is a type of allergen immunotherapy that is commonly used in clinical practice. However, SCIT has inconsistent effects on individuals, and it is yet unclear what factors affect therapeutic efficacy. In recent years, vitamin D levels have been speculated as a potential factor influencing SCIT efficacy. Objective: To investigate the effect of serum vitamin D level on the SCIT efficacy in children with allergic rhinitis and/or asthma caused by dust mite allergy. Methods: According to the panel consensus, children with asthma and/or allergic rhinitis who received SCIT were divided into the vitamin D deficiency group (<12 ng/ml), vitamin D insufficiency group (12-20 ng/ml), and vitamin D sufficiency group (>20 ng/ml). Serum 1-25(OH) D3, blood eosinophil, total IgE, dermatophagoides pteronyssinus (Dp), and dermatophagoides farina (Df) specific IgE (sIgE) were detected, and questionnaires of symptom and medication scores were collected before and after one year of treatment. Results: After one year of SCIT treatment, the symptom and medication score significantly decreased (P < 0.05), but there was no difference between the efficacy in different groups (P > 0.05). Our study found a statistical difference in Dp sIgE level between the vitamin D deficiency and the sufficiency groups (P = 0.024), and vitamin D levels become lower with children's growth (Y = -0.8981*X + 34.26, P = 0.0025). Conclusions: No difference was found between the efficacy of one-year SCIT and serum vitamin D levels based on symptom and medication scores. Nevertheless, higher vitamin D levels may be associated with a decreased indicator of Dp allergy.

10.
Front Immunol ; 13: 964910, 2022.
Article in English | MEDLINE | ID: mdl-36059521

ABSTRACT

Depression in childhood negatively affects the growth and development, school performance, and peer or family relationships of affected children, and may even lead to suicide. Despite this, its etiology and pathophysiology remain largely unknown. Increasing evidence supports that gut microbiota plays a vital role in the development of childhood depression. However, little is known about the underlying mechanisms, as most clinical studies investigating the link between gut microbiota and depression have been undertaken in adult cohorts. In present study, a total of 140 school-aged children (6-12 years) were enrolled, including 92 with depression (male/female: 42/50) and 48 healthy controls (male/female: 22/26) from Lishui, Zhejiang, China. Illumina sequencing of the V3-V4 region of the 16S rRNA gene was used to investigate gut microbiota profiles while Bio-Plex Pro Human Cytokine 27-plex Panel was employed to explore host immune response. We found that, compared with healthy controls, children with depression had greater bacterial richness and altered ß-diversity. Pro-inflammatory genera such as Streptococcus were enriched in the depression group, whereas anti-inflammatory genera such as Faecalibacterium were reduced, as determined by linear discriminant analysis effect size. These changes corresponded to altered bacterial functions, especially the production of immunomodulatory metabolites. We also identified the presence of a complex inflammatory condition in children with depression, characterized by increased levels of pro-inflammatory cytokines such as IL-17 and decreased levels of anti-inflammatory cytokines such as IFN-γ. Correlation analysis demonstrated that the differential cytokine abundance was closely linked to changes in gut microbiota of children with depression. In summary, key functional genera, such as Streptococcus and Faecalibacterium, alone or in combination, could serve as novel and powerful non-invasive biomarkers to distinguish between children with depression from healthy ones. This study was the first to demonstrate that, in Chinese children with depression, gut microbiota homeostasis is disrupted, concomitant with the activation of a complex pro-inflammatory response. These findings suggest that gut microbiota might play an important role in the pathogenesis of depression in school-aged children, while key functional bacteria in gut may serve as novel targets for non-invasive diagnosis and patient-tailored early precise intervention in children with depression.


Subject(s)
Cytokines , Depression , Gastrointestinal Microbiome , Bacteria/genetics , Case-Control Studies , Child , Cytokines/immunology , Depression/immunology , Depression/microbiology , Female , Gastrointestinal Microbiome/immunology , Humans , Male , RNA, Ribosomal, 16S/genetics
11.
Scott Med J ; 67(4): 135-143, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35918840

ABSTRACT

BACKGROUND AND AIMS: Different prospective cohort studies have focused on the C-reactive protein (ie, a pentameric protein) biomarker as a predictor of post-stroke depression. In this review and meta-analysis, we will attempt to synthesize the evidence for the association between C-reactive protein and the development of post-stroke depression. METHODS: We systematically searched five academic databases for relevant studies according to the PRISMA guidelines. We evaluate the comparative levels of C-reactive protein in patients with stroke and/without depression, and analyzed the hazard ratio to evaluate the overall risk of C-reactive protein levels in patients with stroke. RESULTS: We selected eligible studies with 2534 patients (mean age: 65.2 ± 5.9 years) from the initial 10 926 studies in the databases. Increased C-reactive protein levels (Hedge's g, 0.84) in patients with stroke and depression as compared to patients with stroke without depression. Increased levels of C-reactive protein were associated with the onset of depression (Hazard's ratio, 1.6) in patients with stroke. CONCLUSION: Our findings provide an association of C-reactive protein with the development of post-stroke depression, and present higher levels than patients with stroke without depression. Additionally, our findings support the role of C-reactive protein levels as markers for predicting depression in patients with stroke.


Subject(s)
C-Reactive Protein , Stroke , Humans , Middle Aged , Aged , Depression/etiology , Prospective Studies , Stroke/complications
12.
Front Immunol ; 13: 937555, 2022.
Article in English | MEDLINE | ID: mdl-35812394

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by motor dysfunction. Growing evidence has demonstrated that gut dysbiosis is involved in the occurrence, development and progression of PD. Numerous clinical trials have identified the characteristics of the changed gut microbiota profiles, and preclinical studies in PD animal models have indicated that gut dysbiosis can influence the progression and onset of PD via increasing intestinal permeability, aggravating neuroinflammation, aggregating abnormal levels of α-synuclein fibrils, increasing oxidative stress, and decreasing neurotransmitter production. The gut microbiota can be considered promising diagnostic and therapeutic targets for PD, which can be regulated by probiotics, psychobiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, diet modifications, and Chinese medicine. This review summarizes the recent studies in PD-associated gut microbiota profiles and functions, the potential roles, and mechanisms of gut microbiota in PD, and gut microbiota-targeted interventions for PD. Deciphering the underlying roles and mechanisms of the PD-associated gut microbiota will help interpret the pathogenesis of PD from new perspectives and elucidate novel therapeutic strategies for PD.


Subject(s)
Gastrointestinal Microbiome , Neurodegenerative Diseases , Parkinson Disease , Animals , Dysbiosis/therapy , Fecal Microbiota Transplantation , Parkinson Disease/pathology
13.
Front Cell Infect Microbiol ; 12: 886872, 2022.
Article in English | MEDLINE | ID: mdl-35719348

ABSTRACT

Schizophrenia (SZ) is a severe neuropsychiatric disorder with largely unknown etiology and pathogenesis. Mounting preclinical and clinical evidence suggests that the gut microbiome is a vital player in SZ. However, the gut microbiota characteristics and its host response in elderly SZ patients are still not well understood. A total of 161 samples was collected, including 90 samples from elderly SZ patients and 71 samples from healthy controls. We explored the gut microbiota profiles targeting the V3-V4 region of the 16S rRNA gene by MiSeq sequencing, and to analyze their associations with host immune response. Our data found that bacterial ß-diversity analyses could divide the SZ patients and healthy controls into two different clusters. The Linear discriminant analysis Effect Size (LEfSe) identified the compositional changes in SZ-associated bacteria, including Faecalibacterium, Roseburia, Actinomyces, Butyricicoccus, Prevotella and so on. In addition, the levels of pro-inflammatory cytokines such as IL-1ß were greatly increased in SZ patients while the levels of anti-inflammatory cytokines such as IFN-γ were markedly decreased. Correlation analysis suggested that these bacteria contributed to immune disturbances in the host that could be used as non-invasive biomarkers to distinguish the SZ patients from healthy controls. Moreover, several predicted functional modules, including increased lipopolysaccharide biosynthesis, folate biosynthesis, lipoic acid metabolism, and decreased bile acid biosynthesis, fatty acid biosynthesis in SZ-associated microbiota, could be utilized by the bacteria to produce immunomodulatory metabolites. This study, for the first time, demonstrated the structural and functional dysbiosis of the fecal microbiota in Chinese elderly SZ patients, suggesting the potential for using gut key functional bacteria for the early, non-invasive diagnosis of SZ, personalized treatment, and the development of tailor-made probiotics designed for Chinese elderly SZ patients.


Subject(s)
Immune System Diseases , Schizophrenia , Aged , Bacteria/genetics , China , Cytokines , Dysbiosis/microbiology , Feces/microbiology , Humans , RNA, Ribosomal, 16S/genetics
14.
J Ethnopharmacol ; 293: 115238, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35351576

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Radix scutellariae (the root of Scutellaria baicalensis Georgi), is a traditional Chinese medicine (TCM) used to treat type 2 diabetes mellitus (T2DM). Abundant flavonoids are the antidiabetic components of Radix scutellariae, of which baicalin (Baicalein 7-O-glucuronide, BG) is the major bioactive component. Our previous studies found that the water extract of Radix scutellariae (WESB) could exert hypoglycemic and hypolipidemic efficacies by adjusting the ileum FXR-medicated interaction between gut microbiota and bile acid (BA) metabolism. However, it remains unclear whether WESB and its biologically active ingredients exert an antidiabetic effect through bile acid signaling mediated by FXR-CYP7A1. AIMS OF THE STUDY: To explore the mechanism of WESB and its total flavonoids (TF) further and BG on BA signals and glycolipid metabolism in T2DM mice. MATERIALS AND METHODS: The antidiabetic effects of WESB, TF and BG were evaluated by indexing the body weight, fasting blood glucose (FBG) and oral glucose tolerance test (OGTT) in HFD/STZ-induced (high-fat diet and streptozocin) diabetic mice, and comparing them with the positive control (metformin). The lipids in the mouse liver and the total bile acids (TBA) in the mouse liver and bile were detected by commercial kits. The concentration of BAs in the mouse feces was determined by liquid chromatography-tandem mass spectrometry. The protein expression levels of cholesterol 7α-hydroxylase (CYP7A1), farnesol X receptor (FXR), etc., in the liver and/or ileum, play a key role in the BAs metabolism of T2DM mice were evaluated by immunoblot analysis. RESULTS: The hyperglycemia and impaired glucose tolerance of T2DM mice were improved after WESB, TF and BG treatment. Especially after BG administration, the levels of low-density lipoprotein-cholesterol (LDL-c) and total glyceride (TG) in the T2DM mouse liver were significantly decreased (p < 0.05). While the level of high-density lipoprotein cholesterol (HDL-c) was significant increased (p < 0.001). Meanwhile, the levels of TBA in both the liver and bile of T2DM mice were significantly decreased by BG (p < 0.05). Moreover, the high expression of CYP7A1 in the liver of T2DM mice was significantly inhibited by WESB, TF and BG (p < 0.05), and the high expression of FXR in the ileum of T2DM mice was significantly inhibited by TF (p < 0.05). CONCLUSION: These results indicated that the hypoglycemic effects of WESB, TF and BG might be exerted by inhibiting the expression of CYP7A1 in T2DM mice, and TF inhibited expression of intestinal FXR by inducing changes in fecal BA profile. BG significantly improved hepatic lipid metabolism. Moreover, BG reduced lipid accumulation in the liver and bile by inhibiting the expression of CYP7A1 in T2DM mice. These findings provide useful explanations for the antidiabetic mechanism of Radix scutellariae.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Flavonoids , Scutellaria , Animals , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Flavonoids/pharmacology , Glycolipids/metabolism , Hypoglycemic Agents/pharmacology , Lipid Metabolism , Liver , Mice , Scutellaria/chemistry , Streptozocin , Water
15.
Parasit Vectors ; 15(1): 46, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35123560

ABSTRACT

BACKGROUND: Angiostrongylus cantonensis L5, parasitizing human cerebrospinal fluid, causes eosinophilic meningitis, which is attributed to tissue inflammatory responses caused primarily by the high percentage of eosinophils. Eosinophils are also involved in killing helminths, using the peroxidative oxidation and hydrogen peroxide (H2O2) generated by dismutation of superoxide produced during respiratory burst. In contrast, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival. In previous study, we demonstrated the extracellular function of Acan-Gal-1 in inducing the apoptosis of macrophages. Here, the intracellular functions of Acan-Gal-1 were investigated, aiming to further reveal the mechanism involved in A. cantonensis L5 worms surviving inflammatory responses in the human central nervous system. METHODS: In this study, a model organism, Caenorhabditis elegans, was used as a surrogate to investigate the intracellular functions of Acan-Gal-1 in protecting the worm from its host's immune attacks. First, structural characterization of Acan-Gal-1 was analyzed using bioinformatics; second, qRT-PCR was used to monitor the stage specificity of Acan-gal-1 expression in A. cantonensis. Microinjections were performed to detect the tissue specificity of lec-1 expression, the homolog of Acan-gal-1 in C. elegans. Third, microinjection was performed to develop Acan-gal-1::rfp transgenic worms. Then, oxidative stress assay and Oil Red O fat staining were used to determine the functions of Acan-Gal-1 in C. elegans. RESULTS: The results of detecting the stage specificity of Acan-gal-1 expression showed that Acan-Gal-1 was upregulated in both L5 and adult worms. Detection of the tissue specificity showed that the homolog of Acan-gal-1 in C. elegans, lec-1 was expressed ubiquitously and mainly localized in cuticle. Investigating the intracellular functions of Acan-Gal-1 in the surrogate C. elegans showed that N2 worms expressing pCe-lec-1::Acan-gal-1::rfp, with lipid deposition reduced, were significantly resistant to oxidative stress; lec-1 mutant worms, where lipid deposition increased, showed susceptible to oxidative stress, and this phenotype could be rescued by expressing pCe-lec-1::Acan-gal-1::rfp. Expressing pCe-lec-1::Acan-gal-1::rfp or lec-1 RNAi in fat-6;fat-7 double-mutant worms, where fat stores were reduced, had no significant effect on the oxidative stress tolerance. CONCLUSION: In C. elegans worms, upregulated Acan-Gal-1 plays a defensive role against damage due to oxidative stress for worm survival by reducing fat deposition. This might indicate the mechanism by which A. cantonensis L5 worms, with upregulated Acan-Gal-1, survive the immune attack of eosinophils in the human central nervous system.


Subject(s)
Angiostrongylus cantonensis , Caenorhabditis elegans/parasitology , Galectin 1 , Lipid Metabolism , Oxidative Stress , Adipose Tissue , Angiostrongylus cantonensis/genetics , Animals , Caenorhabditis elegans/genetics , Galectin 1/genetics , Hydrogen Peroxide
16.
Crit Rev Food Sci Nutr ; 62(13): 3509-3534, 2022.
Article in English | MEDLINE | ID: mdl-33377391

ABSTRACT

Aging is characterized by the functional decline of tissues and organs and increased risk of aging-associated disorders, which pose major societal challenges and are a public health priority. Despite extensive human genetics studies, limited progress has been made linking genetics with aging. There is a growing realization that the altered assembly, structure and dynamics of the gut microbiota actively participate in the aging process. Age-related microbial dysbiosis is involved in reshaping immune responses during aging, which manifest as immunosenescence (insufficiency) and inflammaging (over-reaction) that accompany many age-associated enteric and extraenteric diseases. The gut microbiota can be regulated, suggesting a potential target for aging interventions. This review summarizes recent findings on the physiological succession of gut microbiota across the life-cycle, the roles and mechanisms of gut microbiota in healthy aging, alterations of gut microbiota and aging-associated diseases, and the gut microbiota-targeted anti-aging strategies.


Subject(s)
Gastrointestinal Microbiome , Healthy Aging , Immunosenescence , Aging , Dysbiosis , Gastrointestinal Microbiome/physiology , Humans
17.
J Wuhan Univ Technol Mater Sci Ed ; 36(4): 600-606, 2021.
Article in English | MEDLINE | ID: mdl-34483596

ABSTRACT

Using nerve guide conduits (NGCs) to promote the regeneration of PNI is a feasible alternative to autograft. Compared with NGCs made of single material, composite NGCs have a greater development prospect. Our previous research has confirmed that poly(D, L-lactic acid)/ß-tricalcium phosphate/hyaluronic acid/chitosan/nerve growth factor (PDLLA/ß-TCP/HA/CHS/NGF) NGCs have excellent physical and chemical properties, which can slowly release NGF and support cell adhesion and proliferation. In this study, PDLLA/ß-TCP/HA/CHS/NGF NGCs were prepared and used to bridge a 10 mm sciatic nerve defect in 200-250 g Sprague-Dawley (SD) rat to verify the performance of the NGCs in vivo. Substantial improvements in nerve regeneration were observed after using the PDLLA/ß-TCP/HA/CHS/NGF NGCs based on gross post-operation observation, triceps wet weight analysis and nerve histological assessment. In vivo studies illustrate that the PDLLA/ß-TCP/HA/CHS/NGF sustained-release NGCs can effectively promote peripheral nerve regeneration, and the effect is similar to that of autograft.

18.
Front Aging Neurosci ; 13: 650047, 2021.
Article in English | MEDLINE | ID: mdl-34122039

ABSTRACT

Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disease, characterized by a decline in cognitive function and neuronal loss, and is caused by several factors. Numerous clinical and experimental studies have suggested the involvement of gut microbiota dysbiosis in patients with AD. The altered gut microbiota can influence brain function and behavior through the microbiota-gut-brain axis via various pathways such as increased amyloid-ß deposits and tau phosphorylation, neuroinflammation, metabolic dysfunctions, and chronic oxidative stress. With no current effective therapy to cure AD, gut microbiota modulation may be a promising therapeutic option to prevent or delay the onset of AD or counteract its progression. Our present review summarizes the alterations in the gut microbiota in patients with AD, the pathogenetic roles and mechanisms of gut microbiota in AD, and gut microbiota-targeted therapies for AD. Understanding the roles and mechanisms between gut microbiota and AD will help decipher the pathogenesis of AD from novel perspectives and shed light on novel therapeutic strategies for AD.

19.
Food Funct ; 12(7): 3191-3205, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33735338

ABSTRACT

Fructooligosaccharides (FOS) can change gut microbiota composition and play a protective role in food allergy (FA). Furthermore, the protective mechanism of FOS against FA is unclear. In this study, intestinal flora and tryptophan (Trp) metabolites were investigated in a mouse model with FA supplemented with FOS. Meanwhile, we injected aryl hydrocarbon receptor antagonists (AhR-A) into a mouse model of FA supplemented with FOS to investigate whether T helper cell (Th) 17/regulatory T (Treg) cell balance was affected. Our research studies showed that dietary intake of FOS provided moderate protection from the intestinal inflammation induced by ovalbumin (OVA). This protective effect disappeared in AhR-A mice. The OVA mice manifestations had significantly lower bacterial richness, when compared to the normal control (NC) mice. Among fecal bacteria, the abundance of Akkermansiaceae (family level) and Verrucomicrobia (phylum level) increased and Ruminococcacere (phylum level) decreased in the feces of allergic mice. These changes were reversed by FOS treatment. FOS modulated the gut microbiome profiles that were altered in OVA mice, which showed an increase in the abundance of Ruminococcacere (phylum level) and a decrease in the abundance of Akkermansiaceae (family level) and Verrucomicrobia (phylum level). Liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis of Trp metabolites showed significant reductions in the level of kynurenine (kyn) in the serum of OVA mice, as compared to NC and FOS mice. Conversely, the levels of Trp and 5-hydroxytryptamine (5-HT) were significantly increased in OVA mice. Correlation analysis revealed a negative relationship between the relative abundance of Verrucomicrobiae (class level) and Akkermansiaceae (family level) with kyn, and a positive relationship with 5-HT. FOS significantly reduced interleukin-17A (IL-17A) and retinoic acid-associated nuclear orphan receptor-γt (RORγt) in FOS mice but not in AhR-A mice. FOS increased the level of interleukin-10 (IL-10) and Forkhead box P3 (Foxp3) in FOS mice but not in AhR-A mice. These findings suggest that FOS ameliorates allergic symptoms and impacts Th17/Treg balance in mice by modulating the gut microbiota composition and Trp metabolites. FOS may serve as an effective tool for the treatment of FA by regulating immune and gut microbiota.


Subject(s)
Food Hypersensitivity/prevention & control , Oligosaccharides/administration & dosage , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred BALB C , Oligosaccharides/pharmacology , Ovalbumin , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Tryptophan/metabolism
20.
Insects ; 12(1)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450838

ABSTRACT

Apoptotic protease activating factor-1 (Apaf-1) is an adaptor molecule, essential for activating initiator caspase and downstream effector caspases, which directly cause apoptosis. In fruit flies, nematodes, and mammals, Apaf-1 has been extensively studied. However, the structure and function of Apaf-1 in Lepidoptera remain unclear. This study identified a novel Apaf-1 from Spodoptera litura, named Sl-Apaf-1. Sl-Apaf-1 contains three domains: a CARD domain, as well as NOD and WD motifs, and is very similar to mammalian Apaf-1. Interference of Sl-apaf-1 expression in SL-1 cells blocked apoptosis induced by actinomycin D. Overexpression of Sl-apaf-1 significantly enhances apoptosis induced by actinomycin D in Sf9/SL-1/U2OS cells, suggesting that the function of Sl-Apaf-1 is evolutionarily conserved. Furthermore, Sl-Apaf-1 could interact with Sl-caspase-5 (a homologue of mammalian caspase-9) and yielded a binding affinity of 1.37 × 106 M-1 according isothermal titration calorimetry assay. Initiator caspase (procaspase-5) of S. litura could be activated by Sl-Apaf-1 (without WD motif) in vitro, and the activated Sl-caspase-5 could cleave Sl-procaspase-1 (a homologue of caspase-3 in mammals), which directly caused apoptosis. This study demonstrates the key role of Sl-Apaf-1 in the apoptosis pathway, suggesting that the apoptosis pathway in Lepidopteran insects and mammals is conserved.

SELECTION OF CITATIONS
SEARCH DETAIL
...