Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 17(1): 105-121, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31731342

ABSTRACT

Public water supply facilities are vulnerable to intentional intrusion. In particular, Water Distribution Network (WDN) has become one of the most important public facilities that are prone to be attacked because of its wide coverage and constant open operation. In recent years, water contamination incidents happen frequently, causing serious losses and impacts to the society. Various measures have been taken to tackle this issue. Pollution or contamination isolation by localizing the contamination via sensors and scheduling certain valves have been regarded as one of the most promising solutions. The main challenge is how to schedule water valves to effectively isolate contamination and reduce the residual concentration of contaminants in WDN. In this paper, we are motivated to propose a reinforcement learning based method for valve real time scheduling by treating the sensing data from the sensors as state, and the valve scheduling as action, thus we can learn scheduling policy from uncertain contamination events without precise characterization of contamination source. Simulation results show that our proposed algorithm can effectively isolate the contamination and reduce the risk exclosure to the customers.


Subject(s)
Deep Learning , Environmental Monitoring/methods , Risk Assessment/methods , Water Pollution/analysis , Water Supply , Algorithms , Diffusion , Markov Chains , Water Pollutants, Chemical/analysis , Water Quality
2.
Oncotarget ; 8(33): 54694-54707, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28903375

ABSTRACT

Yin Yang 2 (YY2) is a multifunctional zinc-finger transcription factor that belongs to YY family. Unlike the well-characterized YY1, our understanding regarding the biological functions of YY2 is still very limited. Here we found for the first time that in contrast to YY1, which had been reported to be oncogenic, the expression level of YY2 in tumor cells and/or tissues was downregulated compared with its expression level in the normal ones. We also demonstrated that YY2 exerts biological function contrary to YY1 in cell proliferation. We elucidated that YY2 positively enhances p21 expression, and concomitantly, its silencing promotes cells to enter G2/M phase and enhances cell proliferation. Furthermore, we found that YY2 regulation on p21 occurs p53-dependently. Finally, we identified a novel YY2 binding site in the promoter region of tumor suppressor p53. We found that YY2 binds to the p53 promoter and activates its transcriptional activity, and subsequently, regulates cell cycle progression via p53/p21 axis. Taken together, our study not only identifies YY2 as a novel tumor suppressor gene that plays a pivotal role in cell cycle regulation, but also provides new insights regarding the regulatory mechanism of the conventional p53/p21 axis.

3.
Sci Rep ; 7: 43935, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266625

ABSTRACT

Therapeutic angiogenesis has been considered as a potential strategy for treating peripheral artery diseases including hind-limb ischemia (HLI); however, no effective drug-based treatment is currently available. Here we showed that intramuscular administration of salidroside, an active compound of Chinese herb Rhodiola, could robustly enhance blood perfusion recovery by promoting neovascularization in HLI mice. We revealed that salidroside promoted skeletal muscle cell migration and paracrine function through inhibiting the transcriptional level of prolyl-hydroxylase domain 3 (PHD3) without affecting PHD1 and PHD2. Paracrine signals from salidroside-treated skeletal muscle cells enhanced endothelial and smooth muscle cells migration, while inhibition of FGF2/FGF2R and PDGF-BB/PDGFR-ß pathways abolished this effect, as well as neovascularization in HLI mice. Furthermore, we elucidated that salidroside inhibition on PHD3 might occur through estrogen receptor alpha (ERα). Together, our findings highlights the potential application of salidroside as a novel pharmalogical inhibitor of ERα/PHD3 axis for therapeutic angiogenesis in HLI diseases.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Cell Communication , Glucosides/administration & dosage , Ischemia/drug therapy , Neovascularization, Physiologic/drug effects , Phenols/administration & dosage , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Animals , Cell Line , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/physiology , Hindlimb , Humans , Injections, Intramuscular , Mice, Inbred BALB C , Muscle Cells/drug effects , Muscle Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...