Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
J Phys Condens Matter ; 36(3)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37774718

ABSTRACT

We construct an islamic lattice by considering the nearest-neighbor (NN) hoppings with staggered magnetic fluxes and the next-NN hoppings. This model supports abundant quantum phases for various values of filling fractions. At1/4filling, Chern insulator (CI) phases with Chern numbersC=±1, -2and a zero-Chern-number topological insulator (ZCNTI) phase exist. At3/8filling, several CI phases with Chern numbersC=±1, 3and the ZCNTI phase are obtained. For the filling fraction 3/4, CI phases with Chern numbersC=±1, 2and two ZCNTI phase areas appear. Interestingly, these ZCNTI phases host both robust corner states and gapless edge states which can be characterized by the quantized polarization and quadrupole moment. We further find that staggered magnetic fluxes can give rise to the ZCNTI state at1/4and3/4fillings. Phase diagrams for filling fractions1/8,1/2,5/8and7/8are presented as well. In addition, flat bands are obtained for various filling fractions by tuning the hopping parameters. At 1/8 filling, a best topological flat band (TFB) with flatness ratio about 12 appears. Several trivial flat bands but with total Chern number|C|=1emerge in this model and exactly flat band is found at 3/8 filling. We further investigateν=1/2fractional Chern insulate state when hard-core bosons fill into this TFB model.

3.
Anal Chem ; 95(25): 9646-9653, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37311071

ABSTRACT

Fluorescent rotors with aggregation-induced emission (AIE) and organelle-targeting properties have attracted great attention for sensing subcellular viscosity changes, which could help understand the relationships of abnormal fluctuations with many associated diseases. Despite the numerous efforts spent, it remains rare and urgent to explore the dual-organelle targeting probes and their structural relationships with viscosity-responsive and AIE properties. Therefore, in this work, we reported four meso-five-membered heterocycle-substituted BODIPY-based fluorescent probes, explored their viscosity-responsive and AIE properties, and further investigated their subcellular localization and viscosity-sensing applications in living cells. Interestingly, the meso-thiazole probe 1 showed both good viscosity-responsive and AIE (in pure water) properties and could successfully target both mitochondria and lysosomes, further imaging cellular viscosity changes by treating lipopolysaccharide and nystatin, attributing to the free rotation and potential dual-organelle targeting ability of the meso-thiazole group. The meso-benzothiophene probe 3 with a saturated sulfur only showed good viscosity-responsive properties in living cells with the aggregation-caused quenching effect and no subcellular localization. The meso-imidazole probe 2 showed the AIE phenomenon without an obvious viscosity-responsive property with a C═N bond, while the meso-benzopyrrole probe 4 displayed fluorescence quenching in polar solvents. Therefore, for the first time, we investigated the structure-property relationships of four meso-five-membered heterocycle-substituted BODIPY-based fluorescent rotors with viscosity-responsive and AIE properties, and among these, 1 with a C═N bond and a saturated sulfur on the meso-thiazole, potentially contributing to their corresponding AIE and viscosity-responsive properties, served as a sensitive AIE fluorescent rotor for imaging dual-organelle viscosity in both mitochondria and lysosomes.


Subject(s)
Fluorescent Dyes , Organelles , Fluorescent Dyes/chemistry , Viscosity , Diagnostic Imaging
4.
Cell Discov ; 9(1): 8, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36658132

ABSTRACT

N6-methyldeoxyadenine (6mA) has recently been reported as a prevalent DNA modification in eukaryotes. The Tetrahymena thermophila MTA1 complex consisting of four subunits, namely MTA1, MTA9, p1, and p2, is the first identified eukaryotic 6mA methyltransferase (MTase) complex. Unlike the prokaryotic 6mA MTases which have been biochemically and structurally characterized, the operation mode of the MTA1 complex remains largely elusive. Here, we report the cryogenic electron microscopy structures of the quaternary MTA1 complex in S-adenosyl methionine (SAM)-bound (2.6 Å) and S-adenosyl homocysteine (SAH)-bound (2.8 Å) states. Using an AI-empowered integrative approach based on AlphaFold prediction and chemical cross-linking mass spectrometry, we further modeled a near-complete structure of the quaternary complex. Coupled with biochemical characterization, we revealed that MTA1 serves as the catalytic core, MTA1, MTA9, and p1 likely accommodate the substrate DNA, and p2 may facilitate the stabilization of MTA1. These results together offer insights into the molecular mechanism underpinning methylation by the MTA1 complex and the potential diversification of MTases for N6-adenine methylation.

6.
Microb Cell Fact ; 21(1): 41, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305639

ABSTRACT

BACKGROUND: Phospholipase D (PLD) has significant advantages in the food and medicine industries due to its unique transphosphatidylation. However, the high heterologous expression of PLD is limited by its cytotoxicity. The present study sought to develop an efficient and extracellular expression system of PLD in the non-pathogenic Brevibacillus choshinensis (B. choshinensis). RESULTS: The extracellular PLD was effectively expressed by the strong promoter (P2) under Mg2+ stress, with the highest activity of 10 U/mL. The inductively coupled plasma-mass spectrometry (ICP-MS) results elucidated that the over-expression of PLD by P2 promoter without Mg2+ stress induced the ionic homeostasis perturbation caused by the highly enhanced Ca2+ influx, leading to cell injury or death. Under Mg2+ stress, Ca2+ influx was significantly inhibited, and the strengths of P2 promoter and HWP gene expression were weakened. The study results revealed that the mechanism of Mg2+ induced cell growth protection and PLD expression might be related to the lowered strength of PLD expression by P2 promoter repression to meet with the secretion efficiency of B. choshinensis, and the redistribution of intracellular ions accompanied by decreased Ca2+ influx. CONCLUSIONS: The PLD production was highly improved under Mg2+ stress. By ICP-MS and qPCR analysis combined with other results, the mechanism of the efficient extracellular PLD expression under Mg2+ stress was demonstrated. The relatively low-speed PLD expression during cell growth alleviated cell growth inhibition and profoundly improved PLD production. These results provided a potential approach for the large-scale production of extracellular PLD and novel insights into PLD function.


Subject(s)
Phospholipase D , Streptomyces , Brevibacillus , Phospholipase D/genetics , Phospholipase D/metabolism , Promoter Regions, Genetic , Streptomyces/genetics
7.
Cell Rep ; 38(7): 110373, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172162

ABSTRACT

mRNA m6A modification is heavily involved in modulation of immune responses. However, its function in antiviral immunity is controversial, and how immune responses regulate m6A modification remains elusive. We here find TBK1, a key kinase of antiviral pathways, phosphorylates the core m6A methyltransferase METTL3 at serine 67. The phosphorylated METTL3 interacts with the translational complex, which is required for enhancing protein translation, thus facilitating antiviral responses. TBK1 also promotes METTL3 activation and m6A modification to stabilize IRF3 mRNA. Type I interferon (IFN) induction is severely impaired in METTL3-deficient cells. Mettl3fl/fl-lyz2-Cre mice are more susceptible to influenza A virus (IAV)-induced lethality than control mice. Consistently, Ythdf1-/- mice show higher mortality than wild-type mice due to decreased IRF3 expression and subsequently attenuated IFN production. Together, we demonstrate that innate signals activate METTL3 via TBK1, and METTL3-mediated m6A modification secures antiviral immunity by promoting mRNA stability and protein translation.


Subject(s)
Antiviral Agents/immunology , Immunity, Innate , Methyltransferases/metabolism , Protein Serine-Threonine Kinases/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Amino Acid Sequence , Animals , Cell Line , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Methyltransferases/chemistry , Mice, Inbred C57BL , Phosphorylation , Protein Binding , Protein Biosynthesis , RNA-Binding Proteins/metabolism , Virus Diseases/immunology , Virus Diseases/pathology
8.
Chem Commun (Camb) ; 58(12): 1930-1933, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35040863

ABSTRACT

Two novel meso-CF3 BODIPY-based fluorescent rotors have been rationally prepared and found to sensitively respond to viscosity in living cells with a fluorescence "turn-on" effect, attributed to the special restricted rotation of meso-CF3 group in viscous environments. Interestingly, a monostyryl probe with one cationic group exhibits good mitochondrial localization and AIE property.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Mitochondria/metabolism , Viscosity , Cations , HeLa Cells , Humans , Molecular Structure , Spectrometry, Fluorescence
9.
Nat Plants ; 6(12): 1432-1438, 2020 12.
Article in English | MEDLINE | ID: mdl-33199893

ABSTRACT

The blue-light receptor cryptochrome (CRY) in plants undergoes oligomerization to transduce blue-light signals after irradiation, but the corresponding molecular mechanism remains poorly understood. Here, we report the cryogenic electron microscopy structure of a blue-light-activated CRY2 tetramer at a resolution of 3.1 Å, which shows how the CRY2 tetramer assembles. Our study provides insights into blue-light-mediated activation of CRY2 and a theoretical basis for developing regulators of CRYs for optogenetic manipulation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cryptochromes/chemistry , Cryptochromes/genetics , Light , Optogenetics/methods , Plant Breeding/methods , Arabidopsis/physiology , Gene Expression Regulation, Plant , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...