Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Sci Signal ; 16(774): eadd0645, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36853961

ABSTRACT

The establishment of pregnancy depends on interactions between the epithelial and stromal cells of the endometrium that drive the decidual reaction that remodels the stroma and enables embryo implantation. Decidualization in mice also depends on ovarian hormones and the presence of a blastocyst. Hedgehog signaling is transduced by primary cilia in many tissues and is involved in epithelial-stromal cross-talk during decidualization. We found that primary cilia on mouse uterine stromal cells increased in number and length during early pregnancy and were required for decidualization. In vitro and in vivo, progesterone promoted stromal ciliogenesis and the production of Indian hedgehog (IHH) in the epithelium and Sonic hedgehog (SHH) in the stroma. Blastocyst-derived TNF-α also induced epithelial IHH, which stimulated the production of SHH in the stroma through a mechanism that may involve the release of arachidonic acid from epithelial cells. In the stroma, SHH activated canonical Hedgehog signaling through primary cilia and promoted decidualization through a mechanism that depended on interleukin-11 (IL-11) and primary cilia. Our findings identify a primary cilia-dependent network that controls endometrial decidualization and suggest primary cilia as a candidate therapeutic target for endometrial diseases.


Subject(s)
Cilia , Hedgehog Proteins , Female , Pregnancy , Animals , Mice , Hedgehog Proteins/genetics , Blastocyst , Embryo Implantation , Epithelial Cells
2.
Eur J Neurol ; 30(11): 3462-3470, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36694359

ABSTRACT

BACKGROUND AND PURPOSE: Intestinal inflammation and gut microbiota dysbiosis contribute to Parkinson disease (PD) pathogenesis, and growing evidence suggests associations between inflammatory bowel diseases (IBD) and PD. Considered as markers of chronic gastrointestinal inflammation, elevated serum anti-Saccharomyces cerevisiae antibody (ASCA) levels, against certain gut fungal components, are related to IBD, but their effect on PD is yet to be investigated. METHODS: Serum ASCA IgG and IgA levels were measured using an enzyme-linked immunosorbent assay, and the gut mycobiota communities were investigated using ITS2 sequencing and analyzed using the Qiime pipeline. RESULTS: The study included 393 subjects (148 healthy controls [HCs], 140 with PD, and 105 with essential tremor [ET]). Both serum ASCA IgG and IgA levels were significantly higher in the PD group than in the ET and HC groups. Combining serum ASCA levels and the occurrence of constipation could discriminate patients with PD from controls (area under the curve [AUC] = 0.81, 95% confidence interval [CI] = 0.76-0.86) and from patients with ET (AUC = 0.85, 95% CI = 0.79-0.89). Furthermore, the composition of the gut fungal community differed between the PD and HC groups. The relative abundances of Saccharomyces cerevisiae, Aspergillus, Candida solani, Aspergillus flavus, ASV601_Fungi, ASV866_Fungi, and ASV755_Fungi were significantly higher in the PD group, and enriched Malassezia restricta was found in the HC group. CONCLUSIONS: Our study identified elevated serum ASCA levels and enriched gut Saccharomyces cerevisiae in de novo PD.

3.
Neural Regen Res ; 18(5): 1154-1160, 2023 May.
Article in English | MEDLINE | ID: mdl-36255006

ABSTRACT

Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson's disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Forty-eight Parkinson's disease patients and 39 matched healthy controls underwent genotyping and 7T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson's disease diagnosis. We found that, in Parkinson's disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein (SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson's disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson's disease.

4.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555215

ABSTRACT

Endometrial decidualization plays a pivotal role during early pregnancy. Compromised decidualization has been tightly associated with recurrent implantation failure (RIF). Primary cilium is an antenna-like sensory organelle and acts as a signaling nexus to mediate Hh, Wnt, TGFß, BMP, FGF, and Notch signaling. However, whether primary cilium is involved in human decidualization is still unknown. In this study, we found that primary cilia are present in human endometrial stromal cells. The ciliogenesis and cilia length are increased by progesterone during in vitro and in vivo decidualization. Primary cilia are abnormal in the endometrium of RIF patients. Based on data from both assembly and disassembly of primary cilia, it has been determined that primary cilium is essential to human decidualization. Trichoplein (TCHP)-Aurora A signaling mediates cilia disassembly during human in vitro decidualization. Mechanistically, primary cilium modulates human decidualization through PTEN-PI3K-AKT-FOXO1 signaling. Our study highlights primary cilium as a novel decidualization-related signaling pathway.


Subject(s)
Cilia , Proto-Oncogene Proteins c-akt , Pregnancy , Female , Humans , Proto-Oncogene Proteins c-akt/metabolism , Cilia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Endometrium/metabolism , Signal Transduction , Stromal Cells/metabolism , Decidua/metabolism
5.
Mov Disord Clin Pract ; 9(7): 909-919, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36247907

ABSTRACT

Background: Parkinson's disease (PD), with either rapid eye movement sleep behavior disorder (RBD) or olfactory dysfunction (OD), has been associated with disease progression. However, there is currently heterogeneity in predicting prognosis. Objectives: To identify whether the concurrent presence of OD and probable RBD (pRBD) in PD (Dual hit in PD, PD-DH) is associated with disease progression. Methods: We included 420 patients with de novo PD from the Parkinson's Progression Markers Initiative: 180 PD only (PD), 82 PD with OD (PD-OD), 94 PD with pRBD (PD-pRBD), and 64 PD with both OD and pRBD (PD-DH). Participants underwent motor and nonmotor evaluations, dopamine transporter imaging, and cerebrospinal fluid (CSF) assessment. Data were analyzed with generalized estimating equations and Cox proportional hazards analysis. Results: The PD-DH subtype was associated with higher scores and faster progression rates in Movement Disorder Society-Unified PD Rating Scale (MDS-UPDRS) Parts II and III. Also, patients in PD-DH group had faster deterioration in nonmotor symptoms, including MDS-UPDRS Part I score, Montreal Cognitive Assessment, Hopkins Verbal Learning Test-Revised, Wechsler Memory Scale-Third edition (WMS-III) Letter Number Sequencing score, Symbol Digit Modalities Test, and Scales for Outcomes in PD-Autonomic scores, with all P values <0.002. Moreover, the PD-DH subtype had a higher mild cognitive impairment risk (hazard ratio = 1.756, 95% confidence interval [CI] = 1.132-2.722; P = 0.012), faster decline in caudate standard uptake values (ß = -0.03, 95% CI = -0.06 to -0.008, P = 0.012), and CSF α-synuclein levels (ß = -77, 95% CI = -149 to -5, P = 0.034) than the PD group. Conclusion: Coexisting pRBD and OD in patients with PD may be associated with faster progressions in motor measurements and in cognitive and autonomic symptoms, indicating PD-DH as a more aggressive subtype for PD.

6.
Eur J Neurol ; 29(12): 3590-3599, 2022 12.
Article in English | MEDLINE | ID: mdl-36047985

ABSTRACT

BACKGROUND AND PURPOSE: The insidious onset of Parkinson's disease (PD) makes early diagnosis difficult. Notably, idiopathic rapid eye movement sleep behavior disorder (iRBD) was reported as a prodrome of PD, which may represent a breakthrough for the early diagnosis of PD. However, currently there is no reliable biomarker for PD diagnosis. Considering that α-synuclein (α-Syn) and neuroinflammation are known to develop prior to the onset of clinical symptoms in PD, it was hypothesized that plasma total exosomal α-Syn (t-exo α-Syn), neural-derived exosomal α-Syn (n-exo α-Syn) and exosomal apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) may be potential biomarkers of PD. METHODS: In this study, 78 PD patients, 153 probable iRBD patients (pRBD) and 63 healthy controls (HCs) were recruited. α-Syn concentrations were measured using a one-step paramagnetic particle-based chemiluminescence immunoassay, and ASC levels were measured using the Ella system. RESULTS: It was found that t-exo α-Syn was significantly increased in the PD group compared to the pRBD and HC groups (p < 0.0001), whilst n-exo α-Syn levels were significantly increased in both the PD and pRBD groups compared to HCs (p < 0.0001). Furthermore, although no difference was found in ASC levels between the PD and pRBD groups, there was a positive correlation between ASC and α-Syn in exosomes. CONCLUSIONS: Our results suggest that both t-exo α-Syn and n-exo α-Syn were elevated in the PD group, whilst only n-exo α-Syn was elevated in the pRBD group. Additionally, the adaptor protein of inflammasome ASC is correlated with α-Syn and may facilitate synucleinopathy.


Subject(s)
Exosomes , Parkinson Disease , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/metabolism , alpha-Synuclein , Parkinson Disease/diagnosis , Exosomes/metabolism , Biomarkers
7.
Nanoscale ; 14(6): 2393-2410, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35088795

ABSTRACT

Targeted and effective drug delivery to central nervous system (CNS) lesions is a major challenge in the treatment of multiple sclerosis (MS). Extracellular vesicles (EVs) have great promise as a drug delivery nanosystem given their unique characteristics, including a strong cargo-loading capacity, low immunogenicity, high biocompatibility, inherent stability, high delivery efficiency, ease of manipulation, and blood-brain barrier (BBB) penetration. Clinical applications are, however, limited by their insufficient targeting capability and "dilution effects" upon systemic administration. Neural stem cells (NSCs) provide an abundant source of EVs because of their remarkable capacity for self-renewal. Here, we developed a novel therapeutic strategy for local delivery and treatment using EVPs, which are derived from NSCs with the expression of the CNS lesion targeting ligand-PDGFRα. Furthermore, we used EVPs as a targeting carrier for encapsulating Bryostatin-1 (Bryo-1), a natural compound with remarkable anti-inflammation ability. Our data showed that Bryo-1 delivered by EVPs was more stable and concentrated in the CNS than native Bryo-1. Systemic injection of a low dosage (1 × 108 particles) of EVPs + Bryo-1, versus only EVPs or Bryo-1 administration, significantly ameliorated clinical disease development, decreased the infiltration of pro-inflammatory cells, blocked myelin loss and astrogliosis, protected BBB integrity, and altered microglia pro-inflammatory phenotype in the CNS of EAE mice. Taken as a whole, our study showed that engineered EVs have a CNS targeting capacity, and it provides potentially powerful therapeutic effects for the treatment of various neuroinflammatory diseases.


Subject(s)
Extracellular Vesicles , Multiple Sclerosis , Animals , Bryostatins/pharmacology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Neuroinflammatory Diseases
8.
Eur Neurol ; 85(1): 24-30, 2022.
Article in English | MEDLINE | ID: mdl-34689144

ABSTRACT

BACKGROUND: Growing evidence suggests important effects of body mass index (BMI) and metabolic status on neurodegenerative diseases. However, the roles of BMI and metabolic status on cognitive outcomes in Parkinson's disease (PD) may vary and are yet to be determined. METHODS: In total, 139 PD patients from the whole PD cohort in Parkinson's Progression Markers Initiative database underwent complete laboratory measurements, demographic and anthropometric parameters at baseline, and were enrolled in this study. Further, they were categorized into 4 different BMI-metabolic status phenotypes using Adult Treatment Panel-III criteria. Motor and cognition scales at baseline and longitudinal changes after a 48-month follow-up were compared among the 4 groups. Repeated-measure linear mixed models were performed to compare PD-related biomarkers among BMI-metabolic status phenotypes across time. RESULTS: We found that PD patients in the metabolically unhealthy normal weight group showed more cognitive decline in global cognition and visuospatial perception after a 48-month follow-up than those in the other 3 groups (p < 0.05). No difference was found in motor scales among different BMI-metabolic status phenotypes. Finally, compared to the metabolically healthy normal weight group, the metabolically healthy obesity group had lower CSF Aß42 and serum neurofilament levels in repeated-measure linear mixed models adjusting for age, gender, APOE e4 carrier status, and years of education (p = 0.031 and 0.046, respectively). CONCLUSION: The MUNW phenotype was associated with a rapid cognitive decline in PD.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Biomarkers , Body Mass Index , Cognitive Dysfunction/complications , Disease Progression , Humans , Parkinson Disease/complications , Parkinson Disease/genetics , Phenotype
9.
Mov Disord ; 37(1): 196-200, 2022 01.
Article in English | MEDLINE | ID: mdl-34612548

ABSTRACT

BACKGROUND: Emerging evidence indicates that the apolipoprotein E (APOE) ε4 exacerbates α-synuclein pathology. OBJECTIVE: To determine whether APOE ε4 contributes to motor progression in early Parkinson's disease (PD). METHODS: Longitudinal data were obtained from 384 patients with PD divided into APOE ε4 carriers (n = 85) and noncarriers (n = 299) in the Parkinson's Progression Marker Initiative. Participants underwent yearly motor assessments over a mean follow-up period of 78.9 months. Repeated measures and linear mixed models were used to test the effects of APOE ε4. RESULTS: The motor progression was significantly more rapid in patients with PD carrying APOE ε4 than in noncarriers (ß = 0.283, P = 0.026, 95% confidence interval: 0.033-0.532). Through subgroup analysis, we found that the effect of APOE ε4 was significant only in patients with high amyloid ß burden (ß = 0.761, P < 0.001, 95% confidence interval: 0.0356-1.167). CONCLUSIONS: APOE ε4 may be associated with rapid motor progression in PD. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Apolipoprotein E4 , Parkinson Disease , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Disease Progression , Genotype , Humans , Parkinson Disease/genetics , Parkinson Disease/physiopathology
10.
World J Clin Cases ; 9(31): 9645-9651, 2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34877302

ABSTRACT

BACKGROUND: Tuberculous myelitis is a rare manifestation of tuberculosis (TB) that is usually caused by hematogenous spread of Mycobacterium tuberculosis (MTB). Neurosyphilis is a neurological disease that occurs when Treponema pallidum invades the brain or the spinal cord. Individually, these two diseases involving the spinal cord are rare and cases of concurrent tuberculous transverse myelitis and asymptomatic neurosyphilis have seldom been reported. CASE SUMMARY: A 56-year-old man presented with numbness and pain of both lower limbs for 2 wk and dysuria for 1 wk. Syphilis serology and cerebrospinal fluid (CSF) analysis supported the diagnosis of neurosyphilis and the patient was treated with intravenous ceftriaxone at first, but symptoms still progressed. Then, magnetic resonance images revealed multiple lesions along the cervicothoracic junction, and chest computed tomography showed a typical TB lesion. MTB DNA was detected in the CSF sample by metagenomic next-generation sequencing. Eventually the patient was diagnosed with tuberculous myelitis combined with asymptomatic neurosyphilis. Subsequently, quadruple anti-TB drug standardized therapy was empirically used and his neurological symptoms improved gradually. CONCLUSION: Patients can have coinfection with tuberculous transverse myelitis and asymptomatic neurosyphilis. Patients with neurosyphilis should be examined for other pathogens.

11.
BMC Neurol ; 21(1): 187, 2021 May 08.
Article in English | MEDLINE | ID: mdl-33964895

ABSTRACT

BACKGROUND: To date, the genetic contribution to Parkinson's disease (PD) remains unclear. Mutations in the collagen type VI alpha 3 (COL6A3) gene were recently identified as a cause of isolated dystonia. Since PD and dystonia are closely related disorders with shared clinical and genetic characteristics, we explored the association between COL6A3 and PD in a Chinese cohort. METHODS: We performed genetic screening of COL6A3 in a Chinese cohort of 173 patients with sporadic PD and 200 healthy controls. We identified variants that are likely to have pathogenic effects based on: 1) a minor allele frequency of < 0.01; and 2) the variant being recognized as deleterious by at least 15 different in silico predicting tools. Finally, we tested the aggregate burden of COL6A3 on PD via SKAT-O analysis. RESULTS: First, we found compound heterozygous COL6A3 gene mutations in one early-onset PD patients. Then, we explored whether COL6A3 variants contributed to increased risk of developing PD in a Chinese population. We detected 21 rare non-synonymous variants. Pathogenicity predictions identified 7 novel non-synonymous variants as likely to be pathogenic. SKAT-O analysis further revealed that an aggregate burden of variants in COL6A3 contributes to PD (p = 0.038). CONCLUSION: An increased aggregate burden of the COL6A3 gene was detected in patients with PD.


Subject(s)
Collagen Type VI/genetics , Parkinson Disease/genetics , Adult , Asian People/genetics , Cohort Studies , Female , Genetic Testing , Humans , Male , Middle Aged , Mutation , Pedigree
12.
Exp Neurol ; 336: 113525, 2021 02.
Article in English | MEDLINE | ID: mdl-33161049

ABSTRACT

A pivotal neuropathological manifestation of synucleinopathies, like Parkinson's disease (PD), is the aggregation of α-synuclein. In a recent cell-to-cell transmission model of α-synuclein, α-synuclein propagation was demonstrated to resemble that of prion proteins in the central nervous system. Furthermore, exosomes, as biomolecule carriers, have been shown to transmit α-synuclein from neuron to neuron. However, the mechanisms underlying exosomal α-synuclein transmission have not been well understood. The NLR family pyrin domain containing 3 protein (NLRP3) inflammasome activation in microglia, and the subsequent release of proinflammatory cytokines, are two crucial pathological events involved in neuroinflammation and PD progression. Research has revealed that the NLRP3 inflammasome may facilitate the secretion of extracellular vesicles, as well as exosomal transmission of proteins like aggregated α-synuclein. However, only a few reports have evaluated these pathogenic mechanisms. Herein we evaluate for the first time the current evidence for the involvement of the NLRP3 inflammasome in microvesicle generation by microglial cells, and the various mechanisms regarding the production, shedding, and content of exosomes in relation to α-synuclein transmission from neuron to neuron. Furthermore, we propose a model of microglial NLRP3 inflammasome-dependent exosome secretion and exosomal α-synuclein transmission in PD. This knowledge may lead to the identification of novel potential targets for drug development and stimulate further research in PD.


Subject(s)
Exosomes/genetics , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Animals , Humans , Microglia/metabolism , Neurons
13.
Aging (Albany NY) ; 12(24): 25805-25818, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33234732

ABSTRACT

Perivascular spaces in the brain have been known to communicate with cerebrospinal fluid and contribute to waste clearance in animal models. In this study, we sought to determine the association between MRI-visible enlarged perivascular spaces (EPVS) and disease markers in Parkinson's disease (PD). We obtained longitudinal data from 245 patients with PD and 98 healthy controls from the Parkinson's Progression Marker Initiative. Two trained neurologists performed visual ratings on T2-weighted images to characterize EPVS in the centrum semiovale (CSO), the basal ganglia (BG) and the midbrain. We found that a greater proportion of patients with PD had low grade BG-EPVS relative to healthy controls. In patients with PD, lower grade of BG-EPVS and CSO-EPVS predicted lower CSF α-synuclein and t-tau. Lower grade of BG-EPVS were also associated with accelerated Hoehn &Yahr stage progression in patients with baseline stage 1. BG-EPVS might be a valuable predictor of disease progression.


Subject(s)
Glymphatic System/diagnostic imaging , Parkinson Disease/diagnostic imaging , alpha-Synuclein/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged , Basal Ganglia/diagnostic imaging , Case-Control Studies , Cerebrospinal Fluid , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Male , Mesencephalon/diagnostic imaging , Middle Aged , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/physiopathology
14.
Front Aging Neurosci ; 12: 580853, 2020.
Article in English | MEDLINE | ID: mdl-33250763

ABSTRACT

BACKGROUND: Excessive aggregation of α-synuclein is the key pathophysiological feature of Parkinson's disease (PD). Rapid eye movement sleep behavior disorder (RBD) is also associated with synucleinopathies and considered as a powerful predictor of PD. Growing evidence suggests the diminished clearance of α-synuclein may be partly attributable to poor interstitial fluid drainage, which can be reflected by magnetic resonance imaging (MRI)-visible enlarged perivascular space (EPVS). However, the effect of MRI-visible EPVS on iRBD and PD, and their correlation with clinical characteristics remain unclear. OBJECTIVE: To evaluate the clinical and neuroimaging significance of MRI-visible EPVS in iRBD and PD patients. METHODS: We enrolled 33 iRBD patients, 82 PD (with and without RBD) patients, and 35 healthy controls (HCs), who underwent clinical evaluation and 3.0 Tesla MRI. Two neurologists assessed MRI-visible EPVS in centrum semiovale (CSO), basal ganglia (BG), substantia nigra (SN), and brainstem (BS). Independent risk factors for iRBD and PD were investigated using multivariable logistic regression analysis. Spearman analysis was used to test the correlation of MRI-visible EPVS with clinical characteristics of patients. RESULTS: iRBD patients had significantly higher EPVS burdens (CSO, BG, SN, and BS) than PD patients. Higher CSO-EPVS and BS-EPVS burdens were independent risk factors for iRBD. Furthermore, higher CSO-EPVS and SN-EPVS burdens were positively correlated with the severity of clinical symptom in iRBD patients, and higher BG-EPVS burden was positively correlated with the severity of cognitive impairment in PD patients. CONCLUSION: iRBD and PD patients have different MRI-visible EPVS burdens, which may be related with a compensatory mechanism in glymphatic system. Lower MRI-visible EPVS burden in PD patients may be a manifestation of severe brain waste drainage dysfunction. These findings shed light on the pathophysiologic relationship between iRBD and PD with respect to neuroimaging marker of PD.

15.
Sci Signal ; 13(646)2020 08 25.
Article in English | MEDLINE | ID: mdl-32843542

ABSTRACT

Embryo implantation involves a sterile inflammatory reaction that is required for the invasion of the blastocyst into the decidua. Adenosine triphosphate (ATP) released from stressed or injured cells acts as an important signaling molecule to regulate many key physiological events, including sterile inflammation. We found that the amount of ATP in the uterine luminal fluid of mice increased during the peri-implantation period, and this depended on the presence of an embryo. We further showed that the release of ATP from receptive epithelial cells was likely stimulated by lactate released from the blastocyst through connexin hemichannels. The ATP receptor P2y2 was present on uterine epithelial cells during the preimplantation period and increased in the stromal cells during the time at which decidualization began. Pharmacological inhibition of P2y2 compromised decidualization and implantation. ATP-P2y2 signaling stimulated the phosphorylation of Stat3 in uterine luminal epithelial cells and the expression of early growth response 1 (Egr1) and prostaglandin-endoperoxide synthase 2 (Ptgs2, also known as Cox-2), all of which are required for decidualization and/or implantation, in stromal cells. Short exposure to high concentrations of ATP promoted decidualization of primary stromal cells, but longer exposures or lower ATP concentrations did not. The expression of genes encoding ATP-degrading ectonucleotidases increased in the decidua during the peri-implantation period, suggesting that they may limit the duration of the ATP signal. Together, our results indicate that the blastocyst-induced release of ATP from uterine epithelial cells during the peri-implantation period may be important for the initiation of stromal cell decidualization.


Subject(s)
Adenosine Triphosphate/metabolism , Blastocyst/metabolism , Decidua/metabolism , Epithelial Cells/metabolism , Receptors, Purinergic P2Y2/metabolism , Animals , Blastocyst/cytology , Cell Line, Tumor , Cells, Cultured , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Embryo Implantation , Female , Gene Expression Regulation, Developmental , Humans , Mice , Receptors, Purinergic P2Y2/genetics , Signal Transduction , Stromal Cells/metabolism , Uterus/cytology , Uterus/metabolism
16.
Mol Genet Genomic Med ; 8(10): e1449, 2020 10.
Article in English | MEDLINE | ID: mdl-32794657

ABSTRACT

BACKGROUND: To date, several studies have suggested that genes involved in monogenic forms of Parkinson's disease (PD) contribute to unrelated sporadic cases, but there is limited evidence in the Chinese population. METHODS: We performed a systematic analysis of 12 autosomal-dominant PD (AD-PD) genes (SNCA, LRRK2, GIGYF2, VPS35, EIF4G1, DNAJC13, CHCHD2, HTRA2, NR4A2, RIC3, TMEM230, and UCHL1) using panel sequencing and database filtration in a case-control study of a cohort of 391 Chinese sporadic PD patients and unrelated controls. We evaluated the association between candidate variants and sporadic PD using gene-based analysis. RESULTS: Overall, 18 rare variants were discovered in 18.8% (36/191) of the index patients. In addition to previously reported pathogenic mutations (LRRK2 p.Arg1441His and p.Ala419Val), another four unknown variants were found in LRRK2, which also contribute to PD risk (p = 0.002; odds ratio (OR) = 7.83, 95% confidence intervals (CI) = 1.76-34.93). The cumulative frequency of undetermined rare variants was significantly higher in PD patients (14.1%) than in controls (3.5%) (p = 0.0002; OR=4.54, 95% CI = 1.93-10.69). CONCLUSION: Our results confirm the strong impact of LRRK2 on the risk of sporadic PD, and also provide considerable evidence of the existence of additional undetermined rare variants in AD-PD genes that contribute to the genetic etiology of sporadic PD in a Chinese cohort.


Subject(s)
Genetic Loci , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Adult , Aged , China , Female , Genes, Dominant , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Male , Middle Aged , Mutation, Missense , Protein Domains
17.
Cell Death Dis ; 11(8): 679, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32826848

ABSTRACT

Local renin-angiotensin system (RAS) in female reproductive system is involved in many physiological and pathological processes, such as follicular development, ovarian angiogenesis, ovarian, and endometrial cancer progress. However, studies on the functional relevance of RAS in human endometrium are limited, especially for renin-angiotensin-aldosterone system (RAAS). In this study, we defined the location of RAS components in human endometrium. We found that angiotensin II type-1 receptor (AT1R) and aldosterone synthase (CYP11B2), major components of RAAS, are specifically expressed in endometrial gland during mid-secretory phase. Aldosterone receptor, mineralocorticoid receptor (MR), is elevated in stroma in mid-secretory endometrium. In vitro, MR is also activated by aldosterone during decidualization. Activated MR initiates LKB1 expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. The impact of PDK4 on decidualization is independent on PDHE1α inactivation. Based on co-immunoprecipitation, PDK4 interacts with p-CREB to prevent its ubiquitination for facilitating decidualization via FOXO1. Restrain of MR activation interrupts LKB1/p-AMPK/PDK4/p-CREB/FOXO1 pathway induced by aldosterone, indicating that aldosterone action on decidualization is mainly dependent on MR stimulation. Aldosterone biosynthesized in endometrial gland during mid-secretory phase promotes decidualization via activating MR/LKB1/p-AMPK/PDK4/p-CREB/FOXO1 signaling pathway. This study provides the valuable information for understanding the underlying mechanism during decidualization.


Subject(s)
Aldosterone/pharmacology , Decidua/metabolism , Endometrium/metabolism , AMP-Activated Protein Kinase Kinases , Adenylate Kinase/metabolism , Adult , Cell Line , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Decidua/drug effects , Down-Regulation/drug effects , Endometrium/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Forkhead Box Protein O1/metabolism , Glycolysis/drug effects , Humans , Menstrual Cycle/drug effects , Models, Biological , Phosphorylation/drug effects , Pregnancy , Progesterone/pharmacology , Protein Serine-Threonine Kinases/metabolism , Receptors, Mineralocorticoid/metabolism , Renin-Angiotensin System/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism , TRPP Cation Channels/metabolism
19.
Plant Physiol Biochem ; 153: 131-140, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32502715

ABSTRACT

WD40 proteins play crucial roles in response to abiotic stress. By screening the genome sequences of Salvia miltiorrhiza Bunge, 225 SmWD40 genes were identified and divided into 9 subfamilies (I-IX). Physiological, biochemical, gene structure, conserved protein motif and GO annotation analyses were performed on SmWD40 family members. The SmWD40-170 was found in 110 SmWD40 genes that contain drought response elements, SmWD40-170 was one of these genes whose response in terms of expression under drought was significant. The expression of SmWD40-170 was also up-regulated by ABA and H2O2. Through observed the stomatal phenotype of SmWD40-170 transgenic lines, the stomatal closure was abolished under dehydration, ABA and H2O2 treatment in SmWD40-170 knockdown lines. Abscisic acid (ABA), as the key phytohormone, elevates reactive oxygen species (ROS) levels under drought stress. The ABA-ROS interaction mediated the generation of H2O2 and the activation of anion channel in guard cells. The osmolality alteration of guard cells further accelerated the stomatal closure. As a second messenger, nitric oxide (NO) regulated ABA signaling, the NO stimulated protein kinase activity inhibited the K+ influx which result in stomatal closure. These NO-relevant events were essential for ABA-induced stomatal closure. The reduction of NO production was also observed in the guard cells of SmWD40-170 knockdown lines. The abolished of stomatal closure attributed to the SmWD40-170 deficiency induced the reduction of NO content. In general, the SmWD40-170 is a critical drought response gene in SmWD40 gene family and regulates ABA- and H2O2-induced stomatal movement by affecting the synthesis of NO.


Subject(s)
Droughts , Genes, Plant , Plant Stomata/physiology , Salvia miltiorrhiza/physiology , WD40 Repeats , Abscisic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Nitric Oxide , Potassium , Salvia miltiorrhiza/genetics , Stress, Physiological
20.
J Neuroinflammation ; 17(1): 198, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32586353

ABSTRACT

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD), an autoimmune astrocytopathic disease associated with the anti-aquaporin-4 (AQP4) antibody, is characterized by extensive necrotic lesions primarily located on the optic nerves and spinal cord. Tanshinone IIA (TSA), an active natural compound extracted from Salvia miltiorrhiza Bunge, has profound immunosuppressive effects on neutrophils. OBJECTIVE: The present study aimed to evaluate the effect of TSA on NMOSD mice and explore the underlying mechanisms. Mice were initially administered TSA (pre-TSA group, n = 20) or vehicle (vehicle group, n = 20) every 8 h for 3 days, and then NMOSD model was induced by intracerebral injection of NMOSD-immunoglobulin G (NMO-IgG) and human complement (hC). In addition, post-TSA mice (n = 10) were administered equal dose of TSA at 8 h and 16 h after model induction. At 24 h after intracerebral injection, histological analysis was performed to assess the inhibitory effects of TSA on astrocyte damage, demyelination, and neuroinflammation in NMOSD mice, and western blotting was conducted to clarify the effect of TSA on the NF-κB and MAPK signaling pathways. Furthermore, flow cytometry and western blotting were conducted to verify the proapoptotic effects of TSA on neutrophils in vitro. RESULTS: There was a profound reduction in astrocyte damage and demyelination in the pre-TSA group and post-TSA group. However, prophylactic administration of TSA induced a better effect than therapeutic treatment. The number of infiltrated neutrophils was also decreased in the lesions of NMOSD mice that were pretreated with TSA. We confirmed that prophylactic administration of TSA significantly promoted neutrophil apoptosis in NMOSD lesions in vivo, and this proapoptotic effect was mediated by modulating the caspase pathway in the presence of inflammatory stimuli in vitro. In addition, TSA restricted activation of the NF-κB signaling pathway in vivo. CONCLUSION: Our data provide evidence that TSA can act as a prophylactic agent that reduces NMO-IgG-induced damage in the mouse brain by enhancing the resolution of inflammation by inducing neutrophil apoptosis, and TSA may serve as a promising therapeutic agent for neutrophil-associated inflammatory disorders, such as NMOSD.


Subject(s)
Abietanes/pharmacology , Apoptosis/drug effects , Brain/drug effects , Neuromyelitis Optica/drug therapy , Neuroprotective Agents/pharmacology , Neutrophils/drug effects , Abietanes/therapeutic use , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Mice , Neuromyelitis Optica/metabolism , Neuromyelitis Optica/pathology , Neuroprotective Agents/therapeutic use , Neutrophils/metabolism , Neutrophils/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...