Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(4): 043401, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566834

ABSTRACT

Motivated by the experimental realization of single-component degenerate Fermi gases of polar ground state KRb molecules with intrinsic two-body losses [L. De Marco et al., A degenerate Fermi gas of polar molecules, Science 363, 853 (2019).SCIEAS0036-807510.1126/science.aau7230], this work studies the finite-temperature loss rate of single-component Fermi gases with weak interactions. First, we establish a relationship between the two-body loss rate and the p-wave contact. Second, we evaluate the contact of the homogeneous system in the low-temperature regime using p-wave Fermi liquid theory and in the high-temperature regime using the second-order virial expansion. Third, conjecturing that there are no phase transitions between the two temperature regimes, we smoothly interpolate the results to intermediate temperatures. It is found that the contact is constant at temperatures close to zero and increases first quadratically with increasing temperature and finally-in agreement with the Bethe-Wigner threshold law-linearly at high temperatures. Fourth, applying the local-density approximation, we obtain the loss-rate coefficient for the harmonically trapped system, reproducing the experimental KRb loss measurements within a unified theoretical framework over a wide temperature regime without fitting parameters. Our results for the contact are not only applicable to molecular p-wave gases but also to atomic single-component Fermi gases, such as ^{40}K and ^{6}Li.

2.
Phys Rev Lett ; 129(24): 243402, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563247

ABSTRACT

We report the creation of a shell BEC in the presence of Earth's gravity with immiscible dual-species BECs of sodium and rubidium atoms. After minimizing the displacement between the centers of mass of the two BECs with a magic-wavelength optical dipole trap, the interspecies repulsive interaction ensures the formation of a closed shell of sodium atoms with its center filled by rubidium atoms. Releasing the double BEC together from the trap, we observe explosion of the filled shell accompanied by energy transfer from the inner BEC to the shell BEC. With the inner BEC removed, we obtain a hollow shell BEC that shows self-interference as a manifestation of implosion. Our results pave an alternative way for investigating many of the intriguing physics offered by shell BECs.

3.
Phys Rev Lett ; 126(19): 193001, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34047582

ABSTRACT

By engineering laser-atom interactions, both Hall ribbons and Hall cylinders as fundamental theoretical tools in condensed matter physics have recently been synthesized in laboratories. Here, we show that turning a synthetic Hall ribbon into a synthetic Hall cylinder could naturally lead to localization. Unlike a Hall ribbon, a Hall cylinder hosts an intrinsic lattice, which arises due to the periodic boundary condition in the azimuthal direction, in addition to the external periodic potential imposed by extra lasers. When these two lattices are incommensurate, localization may occur on a synthetic Hall cylinder. Near the localization-delocalization transitions, physical observables strongly depend on the axial magnetic flux, providing us a sensitive means to probe either the transition or the axial flux using one another. In the irrational limit, physical observables are no longer affected by the axial flux, signifying a scheme to suppress decoherence induced by fluctuations of the axial flux.

4.
Sci Bull (Beijing) ; 66(19): 1967-1972, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-36654166

ABSTRACT

Engineering lattice models with tailored inter-site tunnelings and onsite energies could synthesize essentially arbitrary Riemannian surfaces with highly tunable local curvatures. Here, we point out that discrete synthetic Poincaré half-planes and Poincaré disks, which are created by lattices in flat planes, support infinitely degenerate eigenstates for any nonzero eigenenergies. Such Efimov-like states exhibit a discrete scaling symmetry and imply an unprecedented apparatus for studying quantum anomaly using hyperbolic surfaces. Furthermore, all eigenstates are exponentially localized in the hyperbolic coordinates, signifying the first example of quantum funneling effects in Hermitian systems. As such, any initial wave packet travels towards the edge of the Poincaré half-plane or its equivalent on the Poincaré disk, delivering an efficient scheme to harvest light and atoms in two dimensions. Our findings unfold the intriguing properties of hyperbolic spaces and suggest that Efimov states may be regarded as a projection from a curved space with an extra dimension.

5.
Phys Rev Lett ; 123(26): 260405, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951424

ABSTRACT

Synthetic spaces allow physicists to bypass constraints imposed by certain physical laws in experiments. Here, we show that a synthetic torus, which consists of a ring trap in the real space and internal states of ultracold atoms cyclically coupled by Laguerre-Gaussian Raman beams, could be threaded by a net effective magnetic flux through its surface-an impossible mission in the real space. Such a synthetic Hall torus gives rise to a periodic lattice in real dimensions, in which the periodicity of the density modulation of atoms fractionalizes that of the Hamiltonian. Correspondingly, the energy spectrum is featured by multiple bands grouping into clusters with nonsymmorphic-symmetry-protected band crossings in each cluster, leading to swaps of wave packets in Bloch oscillations. Our scheme allows physicists to glue two synthetic Hall tori such that localization may emerge in a quasicrystalline lattice. If the Laguerre-Gaussian Raman beams and ring traps were replaced by linear Raman beams and ordinary traps, a synthetic Hall cylinder could be realized and deliver many of the aforementioned phenomena.

6.
Phys Rev Lett ; 121(7): 073202, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169056

ABSTRACT

Coherent control of reactants remains a long-standing challenge in quantum chemistry. In particular, we have studied laser-induced molecular formation (photoassociation) in a Raman-dressed spin-orbit-coupled ^{87}Rb Bose-Einstein condensate, whose spin quantum state is a superposition of multiple bare spin components. In contrast to the notably different photoassociation-induced fractional atom losses observed for the bare spin components of a statistical mixture, a superposition state with a comparable spin composition displays the same fractional loss on every spin component. We interpret this as the superposition state itself undergoing photoassociation. For superposition states induced by a large Raman coupling and zero Raman detuning, we observe a nearly complete suppression of the photoassociation rate. This suppression is consistent with a model based upon quantum destructive interference between two photoassociation pathways for colliding atoms with different spin combinations. This model also explains the measured dependence of the photoassociation rate on the Raman detuning at a moderate Raman coupling. Our work thus suggests that preparing atoms in quantum superpositions may represent a powerful new technique to coherently control photochemical reactions.

7.
Phys Rev Lett ; 120(23): 235302, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932699

ABSTRACT

The Yang monopole as a zero-dimensional topological defect has been well established in multiple fields in physics. However, it remains an intriguing question to understand the interaction effects on Yang monopoles. Here, we show that the collective motion of many interacting bosons gives rise to exotic topological defects that are distinct from Yang monopoles seen by a single particle. Whereas interactions may distribute Yang monopoles in the parameter space or glue them to a single giant one of multiple charges, three-dimensional topological defects also arise from continuous manifolds of degenerate many-body eigenstates. Their projections in lower dimensions lead to knotted nodal lines and nodal rings. Our results suggest that ultracold bosonic atoms can be used to create emergent topological defects and directly measure topological invariants that are not easy to access in solids.

8.
Phys Rev Lett ; 116(23): 230401, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341213

ABSTRACT

The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

9.
Phys Rev Lett ; 113(21): 213201, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25479492

ABSTRACT

Motivated by recent experimental investigations of Cs-Cs-Li Efimov resonances, this work theoretically investigates the few-body properties of N-1 noninteracting identical heavy bosons, which interact with a light impurity through a large s-wave scattering length. For Cs-Cs-Cs-Li, we predict the existence of universal four-body states with energies E4(n,1) and E4(n,2), which are universally linked to the energy E3(n) of the nth Efimov trimer. For infinitely large (133)Cs-(6)Li and vanishing (133)Cs-(133)Cs scattering lengths, we find (E4(1,1)/E3(1))(1/2)≈1.51 and (E4(1,2)/E3(1))(1/2)≈1.01. The (133)Cs-(6)Li scattering lengths at which these states merge with the four-atom threshold, the dependence of these energy ratios on the mass ratio between the heavy and light atoms, and selected aspects of the generalized Efimov scenario for N>4 are also discussed. Possible implications of our results for ongoing cold atom experiments are presented.

10.
Phys Rev Lett ; 112(23): 235301, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24972215

ABSTRACT

Superfluidity is a fascinating phenomenon that, at the macroscopic scale, leads to dissipationless flow and the emergence of vortices. While these macroscopic manifestations of superfluidity are well described by theories that have their origin in Landau's two-fluid model, our microscopic understanding of superfluidity is far from complete. Using analytical and numerical ab initio approaches, this Letter determines the superfluid fraction and local superfluid density of small harmonically trapped two-component Fermi gases as a function of the interaction strength and temperature. At low temperature, we find that the superfluid fraction is, in certain regions of the parameter space, negative. This counterintuitive finding is traced back to the symmetry of the system's ground state wave function, which gives rise to a diverging quantum moment of inertia I(q). Analogous abnormal behavior of I(q) has been observed in even-odd nuclei at low temperature. Our predictions can be tested in modern cold atom experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...