Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930838

ABSTRACT

Two new three-dimensional organic-inorganic hybrid crystalline materials, [(Ade)2 CdCl4] (1) and [(Ade)2 CdBr4] (2), were obtained by the slow evaporation of adenine (Ade) and cadmium chloride in aqueous solution at room temperature with hydrochloric acid and hydrobromic acid used as halogen sources. The structural, thermal, optical, and electrical properties were characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, variable-temperature-variable-frequency dielectric constant analysis, and electrochemical tests. With increasing the substitution of Cl by Br, the composition of the material changed and the space group shifted from P-1 to P21/m, with a significant blue-shift in the fluorescence emission. Changing the temperature induced the deformation of the three-dimensional framework structure formed by hydrogen bonding interactions, leading to dielectric anomalies. Cyclic voltammetry tests showed the good reversibility of the electrolysis process. The structural diversity of the complexes was realized by modulating the halogen composition, and a new method for designing novel organic-inorganic hybrids with controllable photoelectric functionality was proposed.

2.
Virus Genes ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866926

ABSTRACT

In order to study the integration of reticuloendotheliosis virus (REV) in pigeonpox virus (PPV), we collected suspected pigeonpox disease material, amplified the 4b core protein gene of PPV, the gp90 gene of REV, and the integrated sequence fragments from the end of the ORF201 segment of PPV to the beginning of the LTR of REV, and sequenced these genes. The results showed that a 4b core protein fragment of 332 bp was amplified and identified as pigeonpox virus, which was named SX/TY/LTR 01/2023. Sequence analysis showed that the pigeonpox virus isolate belonged to genotype A2, which was the closest to the domestic CVL strain, with a identity of 99.4%. A band of 1191 bp was amplified from the gp90 gene of REV, named SX/TY/PPV-REV01/2023, and sequence analysis indicated that REV belonged to genotype III. The sequence analysis showed that REV belonged to genotype III, and belonged to the same large branch as the domestic isolates JSRD0701 and LNR0801, with 99.3% identity. The integrated sequence fragment was amplified to a band of 637 bp, which determined that the REV sequence was integrated in the PPV rather than a mixed infection of the two viruses. This indicates that REV was integrated in this isolation of PPV, suggesting that pigeon farms need to prevent reticuloendotheliosis at the same time when preventing pigeonpox.

3.
Chemosphere ; 359: 142378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763392

ABSTRACT

Soil potentially toxic elements (PTEs) pollution of contaminated sites has become a global environmental issue. However, given that previous studies mostly focused on pollution assessment in surface soils, the current status and environmental risks of potentially toxic elements in deeper soils remain unclear. The present study aims to cognize distribution characteristics and spatial autocorrelation, pollution levels, and risk assessment in a stereoscopic environment for soil PTEs through 3D visualization techniques. Pollution levels were assessed in an integrated manner by combining the geoaccumulation index (Igeo), the integrated influence index of soil quality (IICQs), and potential ecological hazard index. Results showed that soil environment at the site was seriously threatened by PTEs, and Cu and Cd were ubiquitous and the predominant pollutants in the study area. The stratigraphic models and pollution plume simulation revealed that pollutants show a decreasing trend with the deepening of the soil layer. The ranking of contamination soil volume is as follows: Cu > Cd > Zn > As > Pb > Cr > Ni. According to the IICQs evaluation, this region was subject to multiple PTE contamination, with more than 60% of the area becoming seriously and highly polluted. In addition, the ecological hazard model revealed the existence of substantial ecological hazards in the soils of the site. The integrated potential ecological risk index (RI) indicated that 45.7%, 10.13%, and 4.15% of the stereoscopic areas were in considerable, high, and very high risks, respectively. The findings could be used as a theoretical reference for applying multiple methods to integrate evaluation through 3D visualization analysis in the assessment and remediation of PTE-contaminated soils.


Subject(s)
Environmental Monitoring , Metals, Heavy , Mining , Soil Pollutants , Soil , Soil Pollutants/analysis , Environmental Monitoring/methods , Soil/chemistry , Risk Assessment/methods , Metals, Heavy/analysis , Environmental Pollution/analysis , Cities
4.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474582

ABSTRACT

Graphene quantum dots (GQDs) possess the photosensitive absorption for photoelectrochemical hydrogen evolution owing to special band structures, whereas they usually confront with photo-corrosion or undesired charge recombination during photoelectrochemical reactions. Hence, we establish the heterojunction between GQDs and MoSe2 sheets via a hydrothermal process for improved stability and performance. Photoanodic water splitting with hydrogen evolution boosted by the heteroatom doped N,S-GQDs/MoSe2 heterojunction has been attained due to the abundant active sites, promoted charge separation and transfer kinetics with reduced energy barriers. Diphasic 1T and 2H MoSe2 sheet-hybridized quantum dots contribute to the Schottky heterojunction, which can play a key role in expedited carrier transport to inhibit accumulative photo-corrosion and increase photocurrent. Heteroatom dopants lead to favored energy band matching, bandgap narrowing, stronger light absorption and high photocurrent density. The external quantum efficiency of the doped heterojunction has been elevated twofold over that of the non-doped pristine heterojunction. Modification of the graphene quantum dots and MoSe2 heterojunction demonstrate a viable and adaptable platform toward photoelectrochemical hydrogen evolution processes.

5.
Phys Med Biol ; 69(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38198733

ABSTRACT

Objective.Automated segmentation of targets in ultrasound (US) images during US-guided liver surgery holds the potential to assist physicians in fast locating critical areas such as blood vessels and lesions. However, this remains a challenging task primarily due to the image quality issues associated with US, including blurred edges and low contrast. In addition, studies specifically targeting liver segmentation are relatively scarce possibly since studying deep abdominal organs under US is difficult. In this paper, we proposed a network named BAG-Net to address these challenges and achieve accurate segmentation of liver targets with varying morphologies, including lesions and blood vessels.Approach.The BAG-Net was designed with a boundary detection module together with a position module to locate the target, and multiple attention-guided modules combined with the depth supervision strategy to enhance detailed segmentation of the target area.Main Results.Our method was compared to other approaches and demonstrated superior performance on two liver US datasets. Specifically, the method achieved 93.9% precision, 91.2% recall, 92.4% Dice coefficient, and 86.2% IoU to segment the liver tumor. Additionally, we evaluated the capability of our network to segment tumors on the breast US dataset (BUSI), where it also achieved excellent results.Significance.Our proposed method was validated to effectively segment liver targets with diverse morphologies, providing suspicious areas for clinicians to identify lesions or other characteristics. In the clinic, the method is anticipated to improve surgical efficiency during US-guided surgery.


Subject(s)
Liver , Ultrasonography, Mammary , Female , Humans , Radionuclide Imaging , Ultrasonography , Liver/diagnostic imaging , Liver/surgery , Ultrasonography, Interventional , Image Processing, Computer-Assisted
6.
IEEE J Biomed Health Inform ; 28(5): 2930-2942, 2024 May.
Article in English | MEDLINE | ID: mdl-38215329

ABSTRACT

Ultrasound-guided percutaneous interventions have numerous advantages over traditional techniques. Accurate needle placement in the target anatomy is crucial for successful intervention, and reliable visual information is essential to achieve this. However, previous studies have revealed several challenges, such as the variability in needle echogenicity and the common misalignment of the ultrasound beam and the needle. Advanced techniques have been developed to optimize needle visualization, including hardware-based and image-processing-based methods. This paper proposes a novel strategy of integrating ultrasound-based deep learning approaches into an optical navigation system to enhance needle visualization and improve tip positioning accuracy. Both the tracking and detection algorithms are optimized utilizing optical tracking information. The information is introduced into the tracking network to define the search patch update strategy and form a trajectory reference to correct tracking results. In the detection network, the original image is processed according to the needle insertion position and current position given by the optical localization system to locate a coarse region, and the depth-score criterion is adopted to optimize detection results. Extensive experiments demonstrate that our approach achieves promising tip tracking and detection performance with tip localization errors of 1.11 ± 0.59 mm and 1.17 ± 0.70 mm, respectively. Moreover, we establish a paired dataset consisting of ultrasound images and their corresponding spatial tip coordinates acquired from the optical tracking system and conduct real puncture experiments to verify the effectiveness of the proposed methods. Our approach significantly improves needle visualization and provides physicians with visual guidance for posture adjustment.


Subject(s)
Algorithms , Deep Learning , Image Processing, Computer-Assisted , Needles , Ultrasonography, Interventional , Humans , Ultrasonography, Interventional/methods , Image Processing, Computer-Assisted/methods , Surgery, Computer-Assisted/methods
8.
Small ; 20(21): e2309351, 2024 May.
Article in English | MEDLINE | ID: mdl-38102093

ABSTRACT

It is a great demand to develop high-performance electrodes for metal-air batteries to boost cathodic oxygen reduction/evolution dynamics and avoid anodic dendrites. The optimization of catalysis at electrode can be conducted by increasing effective surface exposure, active site density, and unsaturated coordination, via using metal clusters or atomic catalysts, along with conductive or defective supports. Herein, the polarized and synergistic cooperation between dual single atom sites (Fe-N4/Co-N4) are developed through electrolytical exfoliation of defect-enriched π-conjugated macrocyclic polyphthalocyanines to expose more active sites on hollow carbonized shells (HCS). Such FeCo-N4/HCS exhibits outstanding performance in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), to achieve high-performance in an aqueous zinc battery (AZB) with a high discharge capacity (763.6 mAhg-1) after 750 cycles at 10 mA cm-2, showing stable discharge voltage and excellent durability. It also possesses high performance in a lithium-O2 battery owing to abundant defects, synergistic Fe-N4/Co-N4 active sites, reduced energy barriers, and boosted charge and mass transfer and reaction kinetics. This study provides novel perspectives to expand dual single-metal catalysts on macrocycles in the exploration of efficient, durable, and eco-friendly energy devices.

9.
Research (Wash D C) ; 6: 0128, 2023.
Article in English | MEDLINE | ID: mdl-37223469

ABSTRACT

Microneedles (MNs) have drawn rising attention owing to their merits of convenience, noninvasiveness, flexible applicability, painless microchannels with boosted metabolism, and precisely tailored multifunction control. MNs can be modified to serve as novel transdermal drug delivery, which conventionally confront with the penetration barrier caused by skin stratum corneum. The micrometer-sized needles create channels through stratum corneum, enabling efficient drug delivery to the dermis for gratifying efficacy. Then, incorporating photosensitizer or photothermal agents into MNs can conduct photodynamic or photothermal therapy, respectively. Besides, health monitoring and medical detection by MN sensors can extract information from skin interstitial fluid and other biochemical/electronic signals. Here, this review discloses a novel monitoring, diagnostic, and therapeutic pattern by MNs, with elaborate discussion about the classified formation of MNs together with various applications and inherent mechanism. Hereby, multifunction development and outlook from biomedical/nanotechnology/photoelectric/devices/informatics to multidisciplinary applications are provided. Programmable intelligent MNs enable logic encoding of diverse monitoring and treatment pathways to extract signals, optimize the therapy efficacy, real-time monitoring, remote control, and drug screening, and take instant treatment.

10.
Behav Sci (Basel) ; 13(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37102843

ABSTRACT

As an important component of bike-sharing (BS) users, the travel behavior of college students and office workers is important to the promotion of BS within Chinese cities. To explore the influencing factors for the behavioral intentions of BS, this paper makes a different analysis between the two groups. Based on the theory of planned behavior, and using environmental awareness as an extended variable, a BS travel intention model was developed. A total of 676 valid questionnaires were collected and analyzed from college students and office workers in Zhengzhou. The results indicate that attitude, subjective norms, perceived behavior control, and environmental awareness have a positive impact on the behavioral intentions of BS. However, the influence degree of each variable is different between the two groups. Perceived behavior control, including travel time, travel cost, and cycling difficulty, has the greatest impact on BS behavioral intention for college students. Meanwhile, subjective norms, including policy and media publicity, has the most significant impact on BS behavioral intention for office workers. The impact of environmental awareness on college students' use of BS is higher than that of office workers. We also found that undergraduates use BS more frequently than postgraduates. The findings provide the clear influence factors on behavioral intentions of BS between college students and office workers, that can help policy optimization in terms of bike-sharing systems, giving some suggestion for an approach devoted to deepen the individual-context interactions.

11.
Environ Pollut ; 322: 121243, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36764379

ABSTRACT

Revealing the spatiotemporal (ST) distribution and changes in regional soil heavy metals is significant to soil pollution control and management. However, most of the ST analysis models in the existing studies ignore the uncertainty of ST changes in soil heavy metals, making their results unreliable. In this study, using soil Pb collected from 2016 to 2019 in a mining city in China as case data, an ST sequential Gaussian simulation (STSGS) is proposed to reveal the ST distribution and variation in heavy metals in regional soils and their uncertainties. Firstly, the ST variogram was analysed and fitted using a theoretical variogram model integrating the experimental variations at the ST scale. Secondly, 500 simulation realisations with random access path were generated by the ST Kriging method. Considering the obtained 500 simulation realisations, a series of ST analysis methods was proposed and employed to reveal the ST distribution and changes with uncertainty assessment of regional soil heavy metals. The main results are as follows. (1) For the whole study region, soil Pb content initially increased and then decreased from 2016 to 2019. The average probability of soil Pb exceeding 90 mg/kg was 0.121, 0.214, 0.312 and 0.291 in 2016, 2017, 2018 and 2019, respectively, whereas the average probability of always exceeding 90 mg/kg in the 4 years was only 0.032. (2) From 2016 to 2019, the area proportions of the increase and decrease of soil Pb content in the study area were 87.2% and 12.8%, respectively. However, according to the standardised statistic, only 0.161% and 8.72% of the total areas were determined to have a significant decrease and increase in soil Pb content from 2016 to 2019. (3) From 2016 to 2019, the areas with a greater than 0.6 probability of soil Pb concentration decreasing by more than 5 mg/kg and increasing by more than 20, 40 and 80 mg/kg accounted for 4.96%, 32.2%, 11.5% and only 1.91% of the total study region, respectively. The incremental high-probability areas were primarily those where Pb pollution was already serious. Finally, the advantages of the proposed STSGS method were summarised.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil , Uncertainty , Lead/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , China , Risk Assessment
12.
Article in English | MEDLINE | ID: mdl-36497933

ABSTRACT

People's perceptions and understanding of the built environment can shape and regulate travel intention and behavior. From the perspective of urban design, improving the built urban environment is an important way to encourage green travel. This study determined the impact path from the built environment to subway travel behavior, considering the intermediate effect of psychological factors. The impact path could provide feedback for optimizing the built environment, thereby improving the ratio of subway travel. In this study, the impact path hypothesis of "objective environment-subjective psychological-travel behavior" was first proposed, taking travelers' psychological perceptions as the intermediary variable. Second, questionnaires and geographic information were used to measure the objective environment and subjective psychological perceptions. Third, a structural equation model was constructed to verify the proposed path hypothesis. Finally, multiscale geographically weighted regression was used to analyze the influence of subjective and objective factors on travel behavior and its spatial differences. The empirical case sampled 405 residents of Zhengzhou, China. The results verified the proposed impact path hypothesis and revealed spatial heterogeneity in its impact on travel behavior. The research explains how travel behavior is generated and could support the optimization of the urban built environment.


Subject(s)
Built Environment , Travel , Humans , China , Intention , Spatial Regression
13.
Am J Transl Res ; 14(10): 6964-6977, 2022.
Article in English | MEDLINE | ID: mdl-36398260

ABSTRACT

BACKGROUND: DNA methylation controls the transcription of genes and is involved in the development of lung cancer. Our preliminary bioinformatics prediction revealed that sperm associated antigen 6 (SPAG6) was considerably hypermethylated in lung squamous cell carcinoma (LUSC). Thus, this study aimed to probe the mechanism underlying its hypermethylation. METHODS: The effect of DNA methylation of SPAG6 on its expression in LUSC was analyzed. The contributors to SPAG6 DNA hypermethylation were sought. CCK-8, EdU, and Transwell assays were carried out to assess the malignant phenotype of LUSC cells. KEGG pathway enrichment analysis was used to screen for pathways affected by SPAG6, which were confirmed by dual-luciferase assays. Bioinformatics analysis was conducted to dissect the impact of SPAG6 on the immune response and cancer cell stemness in LUSC. RESULTS: DNA methyltransferase 3b (DNMT3b)-mediated hypermethylation of the SPAG6 promoter in LUSC led to SPAG6 downregulation. SPAG6 reverted the malignant phenotype of LUSC cells. SPAG6 regulated the JAK/STAT pathway by inhibiting the transcription of STAT1 and STAT3. The expression of SPAG6 was positively related to immune infiltration in LUSC and inversely related to the expressions of the immunosuppressive genes CTLA4 and PDCD1. SPAG6 expression was negatively correlated with cancer cell stemness in LUSC, and its expression inhibited the expressions of Nanog, ALDH1, and Sox2, markers of cancer cell stemness. CONCLUSIONS: DNMT3b-mediated SPAG6 promoter hypermethylation activates the JAK/STAT pathway to promote LUSC progression.

14.
Behav Sci (Basel) ; 12(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36421758

ABSTRACT

Given the lack of quantitative descriptions on the interaction between psychological factors and the built environment in existing urban bus travel behavior, this study examines the simultaneous influences of the objective-built environment and subjective psychological factors on bus travel intentions. An empirical study on the influence path of bus travel intention was conducted using structural equation modeling. Then, personal attribute factors were introduced, and a linear regression model was used to explore the influence of behavioral intentions. This study uses 410 investigated samples from the residents in Zhengzhou, China. The findings proved that psychological factors play mediating roles between the travel environment and its impact on travel behaviors and confirms the validity of the description of the measurement variable with respect to the bus travel intentions proposed in the study. We also found that the retirement factor among the personal attribute factors could significantly affect bus travel intentions, which means that the retired group prefers to use buses for traveling. This study shows innovations in catching the intermediary effect of psychological factors between the built environment and travel behavior while also quantifying the effects of both subjective and objective factors when choosing bus travel.

15.
PLoS One ; 17(10): e0276235, 2022.
Article in English | MEDLINE | ID: mdl-36240244

ABSTRACT

Urbanization is a comprehensive process of mutual influence among the population, economy, society and living environment, and it depends on the synergy of a series of factors. This paper uses the statistical data of 76 counties in Xinjiang from 1996 to 2018 to construct a comprehensive urbanization evaluation system. Based on the entropy method, comprehensive evaluation model and coupling coordination model, from the scales of time and space, this paper discusses the current situation of the coordinated development of population, economy, society and living environment factors in counties in Xinjiang in the process of urbanization. Local spatial autocorrelation analysis is used to further study the spatial agglomeration effect of the coupling and coordination of urbanization development in the counties. The results show the following: (1) The comprehensive urbanization level of 76 counties in Xinjiang has the characteristics of "center-periphery" development, and high-level counties are clustered on the northern slopes of the Tian Mountains. (2) Most counties are in a serious state of imbalance; notably, the degree of population-economy-society-living environment coupling and coordination in the border counties and towns is in an unsatisfactory state. (3) The county-level cities in Northern Xinjiang belong to the diffusion and spillover areas, the county-level cities in southern Xinjiang belong to the polarization benefit areas, and most other counties are in the state of no spillover effect.


Subject(s)
Economic Development , Urbanization , China , Cities , Spatial Analysis
16.
Mikrochim Acta ; 189(9): 324, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35939150

ABSTRACT

An electromembrane microextraction (EME)-assisted fluorescent molecularly imprinted polymer (MIP) sensing method is presented for detecting the total cathinone drugs in urine samples. In this detection system, the clean-up ability of EME eliminated the matrix effects on both target binding with MIPs and the luminescence of the fluorophore in the sensor. Moreover, by optimizing the extraction conditions of EME, different cathinone drugs with a same concentration show a same response on the single aggregation induced emission (AIE) based MIP (AIE-MIP) sensor (λex = 360 nm, λem = 467 nm). The recoveries were 57.9% for cathinone (CAT) and 78.2% for methcathinone (MCAT). The EME-assisted "light-up" AIE-MIP sensing method displayed excellent performance with a linear range of 2.0-12.0 µmol L-1 and a linear determination coefficient (R2) of 0.99. The limit of detection (LOD) value for EME-assisted "light-up" AIE-MIP sensing method was 0.3 µmol L-1. The relative standard deviation (RSD) values for the detection were found to be within the range 2.0-12.0%. To the best of our knowledge, this is the first time that determination of total illicit drugs with a single fluorescent MIP sensor was achieved and also the first utilization of sample preparation to tune the sensing signal of the sensor to be reported. We believe that this versatile combination of fluorescent MIP sensor and sample preparation can be used as a common protocol for sensing the total amount of a group of analytes in various fields.


Subject(s)
Alkaloids , Molecular Imprinting , Coloring Agents , Limit of Detection , Molecular Imprinting/methods , Polymers
17.
Heart Surg Forum ; 25(2): E243-E252, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35486057

ABSTRACT

Cardiopulmonary bypass (CPB), though indispensable in many cardiac surgery procedures, has several undesirable consequences. The aim of this study was to identify potential genes that may reduce the inflammatory response and complications after CPB. The GSE132176 dataset was selected from the Gene Expression Omnibus (GEO) database and included 10 patients with tetralogy of Fallot and 10 patients with an atrial septal defect who underwent CPB surgery. TSV files were downloaded after GEO2R processing. Protein-protein interaction analysis of common differentially expressed genes (DEGs) was performed using the Search Tool for the Retrieval of Interacting Genes. Gene modules and hub genes were visualized in the protein-protein interaction network using Cytoscape. Enrichment analysis was performed for all important DEGs, modular genes, and hub genes. A total of 72 DEGs were screened, including two functional and one hub gene module. FOS modular genes were primarily enriched in NGF-stimulated transcription, spinal cord injury, and PID AP1 pathway. The ATF3 modular gene was mainly enriched in cytomegalovirus infection and transcriptional misregulation in cancer. Hub gene modules were primarily enriched in the PID AP1 pathway, positive regulation of pri-miRNA transcription by RNA polymerase II, and the PID ATF2 pathway. FOS, JUN, ATF3, and EGR1 were the four most important hub genes; the top three hub genes were involved in the formation of AP-1 and enriched in the AP-1 pathway. Finally, we measured the expression levels of these four genes in patients undergoing CPB via qRT-PCR, and the results were consistent with those obtained in bioinformatic analysis. FOS, JUN, ATF3, and EGR1 and the AP-1 pathway may play key roles in inflammation and complications caused by CPB.


Subject(s)
Computational Biology , Gene Expression Profiling , Cardiopulmonary Bypass/adverse effects , Computational Biology/methods , Gene Expression Profiling/methods , Humans , Inflammation/genetics , Inflammation/prevention & control , Transcription Factor AP-1
18.
Biosens Bioelectron ; 205: 114113, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35219945

ABSTRACT

Development of a specific "light-up" sensor for detection of psychoactive drug has been a great challenge in forensic analysis. To achieve this goal, an aggregation induced emission (AIE) functional monomer containing both phenylboronic group and double bond was synthesized for construction of molecularly imprinted polymers (MIPs) based fluorescent sensor. In this AIE-MIP sensor, the AIE fluorophore could vibrate freely in the absence of the target analyte (cathinone, CAT), while this vibration was restricted after the specific molecular recognition, leading to "light-up" character of the corresponding sensor. FT-IR and LC-MS characterizations proved the AIE monomer was successfully introduced onto AIE-MIPs. SEM analysis indicated the AIE-MIPs was ∼140 nm in diameter. Binding experiments indicated the AIE-MIPs owned high specificity towards CAT. Fluorescent studies confirmed that the "light-up" capability of the AIE-MIPs was highly selective. On this basis, the AIE-MIP sensor was applied in detecting CAT in forensic samples. The sensor reached a detection limit of 0.32 µmol L-1 and exhibited a linear range of 2-12 µmol L-1. Compared to previously reported MIPs based electrochemical sensors and fluorescent sensors for measurement of CAT drug and its analogue, the present AIE-MIP sensor showed much higher sensitivity. To the best of our knowledge, this is the first time that an AIE functional monomer was synthesized for molecular imprinting, and also the first "light-up" AIE-MIP sensor to be reported. We believe that this versatile design of the specific "light-up" sensor can be used as a general protocol for construction of advanced sensor in various fields.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Spectroscopy, Fourier Transform Infrared
19.
Nanoscale ; 14(4): 1075-1095, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35019924

ABSTRACT

The development of graphene promotes the research of similar two-dimensional (2D) materials, especially 2D transition metal dichalcogenides (TMDCs) with semiconductor properties. Monolayer or few-layer TMDCs have several advantages, such as direct band gap, weak interlayer van der Waals force, large interlayer spacing, and abundant marginal active sites, which make them widely used in catalysis, optoelectronics, as well as energy conversion and storage devices. In addition, transition metal diselenides (TMDSs) also possess many intriguing characteristics. For instance, transition metal diselenides (e.g., MoSe2) have a more stable 1T phase, larger interlayer spacing, smaller band gap, and more obvious metallic property of Se than TMDCs (e.g., MoS2). Thus, it has become one of the most attractive research topics branching out from TMDCs. Herein, this review unveils the structures, synthesis, properties, modifications, applications, and perspectives for TMDSs.

20.
Talanta ; 240: 123175, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34972062

ABSTRACT

In this work, the effect of sample matrix on electromembrane extraction (EME) was investigated for the first time using cathinones (log P < 1.0) as polar basic model analytes. Ten supported liquid membranes (SLMs) were tested for EME from spiked buffer solutions, urine, and whole blood samples, respectively. For buffer solutions, SLMs containing aromatic solvents provided higher EME recovery than non-aromatic solvents, which confirmed the significance of cation-π interactions for EME of basic substances. Interestingly, when applied to urine and whole blood samples, aromatic SLMs were less efficient, while non-aromatic SLMs containing abundant hydrogen-bond acidity/basicity were efficient. These observations were explained by SLM fouling, and the antifouling property of the SLM was clearly dependent on the nature of the SLM solvent. Accordingly, a binary SLM containing aromatic 1-ethyl-2-nitrobenzene (ENB) and non-aromatic 1-undecanol (1:1 v/v) was developed. This binary SLM was not prone to fouling, and provided high recoveries of cathinones from urine and whole blood. EME based on this SLM was optimized and evaluated in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS), and the linear ranges with R2 ≥ 0.9903 for cathinones in whole blood and urine were 5-200 ng/mL and 1-200 ng/mL, respectively. The LOD and LOQ of cathinones were ranged from 0.12 to 0.54 ng/mL and 0.38-1.78 ng/mL, respectively. The repeatability and accuracy bias at three levels were ≤11% and within 10%, respectively. In addition, the matrix effect ranged from 88% to 118% was also in compliance with guidelines for bioanalytical method validation provided by the European Medicines Agency.


Subject(s)
Membranes, Artificial , Tandem Mass Spectrometry , Alkaloids , Chromatography, Liquid , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...