Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 15(5): 2958-2976, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38855701

ABSTRACT

Optical coherence tomography (OCT), owing to its non-invasive nature, has demonstrated tremendous potential in clinical practice and has become a prevalent diagnostic method. Nevertheless, the inherent speckle noise and low sampling rate in OCT imaging often limit the quality of OCT images. In this paper, we propose a lightweight Transformer to efficiently reconstruct high-quality images from noisy and low-resolution OCT images acquired by short scans. Our method, PSCAT, parallelly employs spatial window self-attention and channel attention in the Transformer block to aggregate features from both spatial and channel dimensions. It explores the potential of the Transformer in denoising and super-resolution for OCT, reducing computational costs and enhancing the speed of image processing. To effectively assist in restoring high-frequency details, we introduce a hybrid loss function in both spatial and frequency domains. Extensive experiments demonstrate that our PSCAT has fewer network parameters and lower computational costs compared to state-of-the-art methods while delivering a competitive performance both qualitatively and quantitatively.

2.
Micromachines (Basel) ; 12(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672478

ABSTRACT

Micro-electro-mechanical system inertial measurement unit (MEMS-IMU), a core component in many navigation systems, directly determines the accuracy of inertial navigation system; however, MEMS-IMU system is often affected by various factors such as environmental noise, electronic noise, mechanical noise and manufacturing error. These can seriously affect the application of MEMS-IMU used in different fields. Focus has been on MEMS gyro since it is an essential and, yet, complex sensor in MEMS-IMU which is very sensitive to noises and errors from the random sources. In this study, recurrent neural networks are hybridized in four different ways for noise reduction and accuracy improvement in MEMS gyro. These are two-layer homogenous recurrent networks built on long short term memory (LSTM-LSTM) and gated recurrent unit (GRU-GRU), respectively; and another two-layer but heterogeneous deep networks built on long short term memory-gated recurrent unit (LSTM-GRU) and a gated recurrent unit-long short term memory (GRU-LSTM). Practical implementation with static and dynamic experiments was carried out for a custom MEMS-IMU to validate the proposed networks, and the results show that GRU-LSTM seems to be overfitting large amount data testing for three-dimensional axis gyro in the static test. However, for X-axis and Y-axis gyro, LSTM-GRU had the best noise reduction effect with over 90% improvement in the three axes. For Z-axis gyroscope, LSTM-GRU performed better than LSTM-LSTM and GRU-GRU in quantization noise and angular random walk, while LSTM-LSTM shows better improvement than both GRU-GRU and LSTM-GRU networks in terms of zero bias stability. In the dynamic experiments, the Hilbert spectrum carried out revealed that time-frequency energy of the LSTM-LSTM, GRU-GRU, and GRU-LSTM denoising are higher compared to LSTM-GRU in terms of the whole frequency domain. Similarly, Allan variance analysis also shows that LSTM-GRU has a better denoising effect than the other networks in the dynamic experiments. Overall, the experimental results demonstrate the effectiveness of deep learning algorithms in MEMS gyro noise reduction, among which LSTM-GRU network shows the best noise reduction effect and great potential for application in the MEMS gyroscope area.

3.
Micromachines (Basel) ; 11(11)2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33233457

ABSTRACT

Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented.

4.
IEEE J Biomed Health Inform ; 22(4): 1075-1086, 2018 07.
Article in English | MEDLINE | ID: mdl-29969402

ABSTRACT

The accuracy of noninvasive oxygen saturation (SpO2), which is defined by the measurements based on photoplethysmographic (PPG) signals, is intensively affected by motion artifacts (MAs) and low perfusion. This study introduces a novel approach called ESPRIT-MLT to measure SpO2 when such interferences are present. In contrast to previous studies, the work focuses on the harmonic model of the PPG signal and the probability model of results from harmonic analysis. The optimized parametric ESPRIT method is applied to improve the accuracy of harmonic power estimation, and the maximum likelihood SpO2 tracking (MLT) technique is proposed to track the most probable uncontaminated harmonic of heart rate frequency. We construct an evaluation platform for testing the proposed method via generated signals and subject tests. Compared with the nonparametric periodogram method, the probability of correct harmonics being found is improved by 18.7% or 19.7%, when the signal is contaminated by motion artifacts or affected by low perfusion, respectively. In comparison with the reference methods, the proposed ESPRIT-MLT method exhibits a lower average root mean square error (RMSE) (1.17%) in the simulation using an MA-contaminated PPG signal, and a lower RMSE (2.70%) in the simulation using an extremely low (0.05%) perfusion index. A comprehensive subject test that consists of 4 activities and 20 subjects shows an average RMSE of 0.84% ( 0.44%). Furthermore, the time-efficiency is optimized to be adaptable with wearable devices. Therefore, the proposed method has potential in enhancing the performance of clinical pulse oximetry and wearable SpO2 measurement devices for daily use.


Subject(s)
Oximetry/methods , Oxygen/blood , Photoplethysmography/methods , Adolescent , Adult , Algorithms , Female , Fingers/blood supply , Humans , Male , Young Adult
5.
Comput Biol Med ; 91: 291-305, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29102826

ABSTRACT

Monitoring pulse oxygen saturation (SpO2) and heart rate (HR) using photoplethysmography (PPG) signal contaminated by a motion artifact (MA) remains a difficult problem, especially when the oximeter is not equipped with a 3-axis accelerometer for adaptive noise cancellation. In this paper, we report a pioneering investigation on the impact of altering the frame length of Molgedey and Schuster independent component analysis (ICAMS) on performance, design a multi-classifier fusion strategy for selecting the PPG correlated signal component, and propose a novel approach to extract SpO2 and HR readings from PPG signal contaminated by strong MA interference. The algorithm comprises multiple stages, including dual frame length ICAMS, a multi-classifier-based PPG correlated component selector, line spectral analysis, tree-based HR monitoring, and post-processing. Our approach is evaluated by multi-subject tests. The root mean square error (RMSE) is calculated for each trial. Three statistical metrics are selected as performance evaluation criteria: mean RMSE, median RMSE and the standard deviation (SD) of RMSE. The experimental results demonstrate that a shorter ICAMS analysis window probably results in better performance in SpO2 estimation. Notably, the designed multi-classifier signal component selector achieved satisfactory performance. The subject tests indicate that our algorithm outperforms other baseline methods regarding accuracy under most criteria. The proposed work can contribute to improving the performance of current pulse oximetry and personal wearable monitoring devices.


Subject(s)
Heart Rate/physiology , Oximetry/methods , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Adolescent , Adult , Algorithms , Female , Humans , Male , Oxygen/blood , Young Adult
6.
Sci Rep ; 4: 5245, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24912871

ABSTRACT

The thermal (emitted) infrared frequency bands, from 20-40 THz and 60-100 THz, are best known for applications in thermography. This underused and unregulated part of the spectral range offers opportunities for the development of secure communications. The 'THz Torch' concept was recently presented by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels; the energy in each channel is then independently pulsed modulated and multiplexing schemes are introduced to create a robust form of short-range secure communications in the far/mid infrared. To date, octave bandwidth (25-50 THz) single-channel links have been demonstrated with 380 bps speeds. Multi-channel 'THz Torch' frequency division multiplexing (FDM) and frequency-hopping spread-spectrum (FHSS) schemes have been proposed, but only a slow 40 bps FDM scheme has been demonstrated experimentally. Here, we report a much faster 1,280 bps FDM implementation. In addition, an experimental proof-of-concept FHSS scheme is demonstrated for the first time, having a 320 bps data rate. With both 4-channel multiplexing schemes, measured bit error rates (BERs) of < 10(-6) are achieved over a distance of 2.5 cm. Our approach represents a new paradigm in the way niche secure communications can be established over short links.

8.
Chem Commun (Camb) ; 49(39): 4250-2, 2013 May 14.
Article in English | MEDLINE | ID: mdl-22790323

ABSTRACT

The aerobic direct dehydrogenative annulation of N-iminopyridinium ylides with terminal alkynes leading to pyrazolo[1,5-a]pyridine derivatives has been developed.


Subject(s)
Alkynes/chemistry , Copper/chemistry , Oxygen/chemistry , Pyrazoles/chemistry , Pyridines/chemistry , Catalysis , Cyclization , Oxidation-Reduction , Pyrazoles/chemical synthesis , Pyridines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...