Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18112, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872240

ABSTRACT

Efficient grating couplers (GCs) for perfectly vertical coupling are difficult to realize due to the second-order back reflection. In this study, apodized GCs (AGCs) are presented for achieving perfectly-vertical coupling to 220 nm thick silicon-on-insulator (SOI) waveguides in the C-band. We compare the performance of the AGCs to that of uniform GCs (UGCs) and demonstrate the superiority of the former. The AGCs were obtained through inverse design using gradient-based optimization and were found to effectively suppress back reflection and exhibit better matching to the Gaussian beam profile. The design and measurement results show that AGCs have a 3 dB lower coupling loss than UGCs. We fabricated focusing AGCs by electron beam lithography with a single, 70 nm shallow etch and a minimum feature size of 100 nm, which makes them compatible with CMOS technology. The AGCs achieved a coupling efficiency of -5.86 dB for perfectly vertical coupling. Overall, our results demonstrate the potential of AGCs for achieving high-performance coupling in the C-band on the SOI platform.

2.
Sci Adv ; 7(49): eabj8804, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34851676

ABSTRACT

Understanding the properties of materials requires structural characterization over large areas and different scales to link microstructure with performance. Here, we demonstrate a single-beam high-throughput scanning electron microscope allowing the collection of both secondary electron and backscattered electron signals over large areas. Combined with machine learning, a high efficiency in material research is achieved, illustrated here by a multiscale investigation of carbides in a second-generation nickel-base single-crystal superalloy. The resulting terabyte-sized panoramic atlas data, combined with conventional electron microscopy, enable a simultaneous multiscale analysis of carbide evolution during creep regarding specific type, location, composition, size, shape, and relationship with the matrix, providing sample-scale quantitative statistical data and giving a precise insight into the effect of carbides in the superalloy in a way not previously possible.

3.
Chemistry ; 12(30): 7942-7, 2006 Oct 16.
Article in English | MEDLINE | ID: mdl-16871502

ABSTRACT

A straightforward metal-particle-induced, highly localized site-specific corrosion-like mechanism was proposed for the formation of aligned silicon-nanowire arrays on silicon in aqueous HF/AgNO3 solution on the basis of convincing experimental results. The etching process features weak dependence on the doping of the silicon wafers and, thus, provides an efficient method to prepare silicon nanowires with desirable doping characteristics. The novel electrochemical properties between silicon and active noble metals should be useful for preparing novel silicon nanostructures and also new optoelectronic devices.

5.
J Phys Chem B ; 109(27): 13091-3, 2005 Jul 14.
Article in English | MEDLINE | ID: mdl-16852628

ABSTRACT

Nano and micro ZnO rods and arrays have been synthesized by a simple thermal evaporation approach on a cylindrical shape substrate. Most of the synthesized ZnO products are single crystalline with a hexagonal structure and grow along the [0001] direction. Individual protrusive ZnO rods and well-aligned arrays are two typical products in our work. The individual protrusive ZnO rods have diameters of 25 nm approximately 2.1 microm and lengths from several hundred nanometers to 40 microm, while in the well-aligned arrays, the diameter and length of each ZnO rod range from 60 nm to 1.2 microm and from 4 microm to 6 microm, respectively. The heating temperature and deposition position are two key points to control the diameters of the rods. The growth mechanism is discussed and proposed. The perfect crystalline ZnO rods with different scales from nanometer to micrometer are good models for the investigation of the size effect of physical and chemical properties of one-dimensional material.

SELECTION OF CITATIONS
SEARCH DETAIL
...