Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38381644

ABSTRACT

Super-resolving the magnetic resonance (MR) image of a target contrast under the guidance of the corresponding auxiliary contrast, which provides additional anatomical information, is a new and effective solution for fast MR imaging. However, current multi-contrast super-resolution (SR) methods tend to concatenate different contrasts directly, ignoring their relationships in different clues, e.g., in the high-and low-intensity regions. In this study, we propose a separable attention network (comprising high-intensity priority (HP) attention and low-intensity separation (LS) attention), named SANet. Our SANet could explore the areas of high-and low-intensity regions in the "forward" and "reverse" directions with the help of the auxiliary contrast while learning clearer anatomical structure and edge information for the SR of a target-contrast MR image. SANet provides three appealing benefits: First, it is the first model to explore a separable attention mechanism that uses the auxiliary contrast to predict the high-and low-intensity regions, diverting more attention to refining any uncertain details between these regions and correcting the fine areas in the reconstructed results. Second, a multistage integration module is proposed to learn the response of multi-contrast fusion at multiple stages, get the dependency between the fused representations, and boost their representation ability. Third, extensive experiments with various state-of-the-art multi-contrast SR methods on fastMRI and clinical in vivo datasets demonstrate the superiority of our model. The code is released at https://github.com/chunmeifeng/SANet.

2.
Article in English | MEDLINE | ID: mdl-38294925

ABSTRACT

Federated learning enables multiple hospitals to cooperatively learn a shared model without privacy disclosure. Existing methods often take a common assumption that the data from different hospitals have the same modalities. However, such a setting is difficult to fully satisfy in practical applications, since the imaging guidelines may be different between hospitals, which makes the number of individuals with the same set of modalities limited. To this end, we formulate this practical-yet-challenging cross-modal vertical federated learning task, in which data from multiple hospitals have different modalities with a small amount of multi-modality data collected from the same individuals. To tackle such a situation, we develop a novel framework, namely Federated Consistent Regularization constrained Feature Disentanglement (Fed-CRFD), for boosting MRI reconstruction by effectively exploring the overlapping samples (i.e., same patients with different modalities at different hospitals) and solving the domain shift problem caused by different modalities. Particularly, our Fed-CRFD involves an intra-client feature disentangle scheme to decouple data into modality-invariant and modality-specific features, where the modality-invariant features are leveraged to mitigate the domain shift problem. In addition, a cross-client latent representation consistency constraint is proposed specifically for the overlapping samples to further align the modality-invariant features extracted from different modalities. Hence, our method can fully exploit the multi-source data from hospitals while alleviating the domain shift problem. Extensive experiments on two typical MRI datasets demonstrate that our network clearly outperforms state-of-the-art MRI reconstruction methods. The source code is available at https://github.com/IAMJackYan/FedCRFD.

3.
IEEE Trans Med Imaging ; 42(10): 2804-2816, 2023 10.
Article in English | MEDLINE | ID: mdl-35704546

ABSTRACT

Accelerated multi-modal magnetic resonance (MR) imaging is a new and effective solution for fast MR imaging, providing superior performance in restoring the target modality from its undersampled counterpart with guidance from an auxiliary modality. However, existing works simply combine the auxiliary modality as prior information, lacking in-depth investigations on the potential mechanisms for fusing different modalities. Further, they usually rely on the convolutional neural networks (CNNs), which is limited by the intrinsic locality in capturing the long-distance dependency. To this end, we propose a multi-modal transformer (MTrans), which is capable of transferring multi-scale features from the target modality to the auxiliary modality, for accelerated MR imaging. To capture deep multi-modal information, our MTrans utilizes an improved multi-head attention mechanism, named cross attention module, which absorbs features from the auxiliary modality that contribute to the target modality. Our framework provides three appealing benefits: (i) Our MTrans use an improved transformers for multi-modal MR imaging, affording more global information compared with existing CNN-based methods. (ii) A new cross attention module is proposed to exploit the useful information in each modality at different scales. The small patch in the target modality aims to keep more fine details, the large patch in the auxiliary modality aims to obtain high-level context features from the larger region and supplement the target modality effectively. (iii) We evaluate MTrans with various accelerated multi-modal MR imaging tasks, e.g., MR image reconstruction and super-resolution, where MTrans outperforms state-of-the-art methods on fastMRI and real-world clinical datasets.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer
4.
IEEE Trans Med Imaging ; 42(7): 2010-2021, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36018876

ABSTRACT

Federated learning (FL) can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction by enabling multiple institutions to collaborate without needing to aggregate local data. However, the domain shift caused by different MR imaging protocols can substantially degrade the performance of FL models. Recent FL techniques tend to solve this by enhancing the generalization of the global model, but they ignore the domain-specific features, which may contain important information about the device properties and be useful for local reconstruction. In this paper, we propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI). The core idea is to divide the MR reconstruction model into two parts: a globally shared encoder to obtain a generalized representation at the global level, and a client-specific decoder to preserve the domain-specific properties of each client, which is important for collaborative reconstruction when the clients have unique distribution. Such scheme is then executed in the frequency space and the image space respectively, allowing exploration of generalized representation and client-specific properties simultaneously in different spaces. Moreover, to further boost the convergence of the globally shared encoder when a domain shift is present, a weighted contrastive regularization is introduced to directly correct any deviation between the client and server during optimization. Extensive experiments demonstrate that our FedMRI's reconstructed results are the closest to the ground-truth for multi-institutional data, and that it outperforms state-of-the-art FL methods.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...