Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(18): 28124-28133, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34614951

ABSTRACT

Optical underwater target imaging and detection have been a tough but significant challenge in deep-sea exploration. Distant reflected signals drown in various underwater noises due to strong absorption and scattering, resulting in degraded image contrast and reduced detection range. Single-photon feature operating at the fundamental limit of the classical electromagnetic waves can broaden the realm of quantum technologies. Here we experimentally demonstrate a thresholded single-photon imaging and detection scheme to extract photon signals from the noisy underwater environment. We reconstruct the images obtained in a high-loss underwater environment by using photon-limited computational algorithms. Furthermore, we achieve a capability of underwater detection down to 0.8 photons per pulse at Jerlov type III water up to 50 meters, which is equivalent to more than 9 attenuation lengths. The results break the limits of classical underwater imaging and detection and may lead to many quantum-enhanced applications, like air-to-sea target tracking and deep-sea optical exploration.

2.
Phys Rev Lett ; 124(15): 153601, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357035

ABSTRACT

Vector vortex beams simultaneously carrying spin and orbital angular momentum of light promise additional degrees of freedom for modern optics and emerging resources for both classical and quantum information technologies. The inherently infinite dimensions can be exploited to enhance data capacity for sustaining the unprecedented growth in big data and internet traffic and can be encoded to build quantum computing machines in high-dimensional Hilbert space. So far, much progress has been made in the emission of vector vortex beams from a chip surface into free space; however, the generation of vector vortex beams inside a photonic chip has not been realized yet. Here, we demonstrate the first vector vortex beam emitter embedded in a photonic chip by using femtosecond laser direct writing. We achieve a conversion of vector vortex beams with an efficiency up to 30% and scalar vortex beams with an efficiency up to 74% from Gaussian beams. We also present an expanded coupled-mode model for understanding the mode conversion and the influence of the imperfection in fabrication. The fashion of embedded generation makes vector vortex beams directly ready for further transmission, manipulation, and emission without any additional interconnection. Together with the ability to be integrated as an array, our results may enable vector vortex beams to become accessible inside a photonic chip for high-capacity communication and high-dimensional quantum information processing.

3.
Sci Bull (Beijing) ; 65(4): 286-292, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-36659093

ABSTRACT

Quantum process tomography is often used to completely characterize an unknown quantum process. However, it may lead to an unphysical process matrix, which will cause the loss of information with respect to the tomography result. Convex optimization, widely used in machine learning, is able to generate a global optimum that best fits the raw data while keeping the process tomography in a legitimate region. Only by correctly revealing the original action of the process can we seek deeper into its properties like its phase transition and its Hamiltonian. Here, we reconstruct the seawater channel using convex optimization and further test it on the seven fundamental gates. We compare our method to the standard-inversion and norm-optimization approaches using the cost function value and our proposed state deviation. The advantages convince that our method enables a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources. In addition, we examine on a set of non-unitary channels and the reconstructions reach up to 99.5% accuracy. Our method offers a more universal tool for further analyses on the components of the quantum channels and we believe that the crossover between quantum process tomography and convex optimization may help us move forward to machine learning of quantum channels.

4.
Opt Express ; 27(5): 5982-5989, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30876192

ABSTRACT

Quantum key distribution (QKD), harnessing quantum physics and optoelectronics, may promise unconditionally secure information exchange in theory. Recently, theoretical and experimental advances in measurement-device-independent (MDI)-QKD have successfully closed the physical back door in detection terminals. However, the issues of scalability, stability, cost and loss prevent QKD systems from widespread application in practice. Here, we propose and experimentally demonstrate a solution to build a star-topology quantum access network with an integrated server. By using femtosecond laser direct writing techniques, we construct integrated circuits for all the elements of Bell state analyzer together and are able to integrate 10 such analyzer structures on a single photonic chip. The measured high-visibility Bell state analysis suggests the integrated server as a promising platform for the practical application of MDI-QKD network.

5.
Research (Wash D C) ; 2019: 3474305, 2019.
Article in English | MEDLINE | ID: mdl-31912033

ABSTRACT

In quantum theory, the retrodiction problem is not as clear as its classical counterpart because of the uncertainty principle of quantum mechanics. In classical physics, the measurement outcomes of the present state can be used directly for predicting the future events and inferring the past events which is known as retrodiction. However, as a probabilistic theory, quantum-mechanical retrodiction is a nontrivial problem that has been investigated for a long time, of which the Mean King Problem is one of the most extensively studied issues. Here, we present the first experimental test of a variant of the Mean King Problem, which has a more stringent regulation and is termed "Tracking the King." We demonstrate that Alice, by harnessing the shared entanglement and controlled-not gate, can successfully retrodict the choice of King's measurement without knowing any measurement outcome. Our results also provide a counterintuitive quantum communication to deliver information hidden in the choice of measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...